• Title/Summary/Keyword: walking stability

Search Result 331, Processing Time 0.022 seconds

Optimal Manipulation for a Hexapod Walking Robot (6족 보행 로봇에서의 최적 머니퓰레이션)

  • Seo, Hyeon-Se;Sung, Young Whee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.168-174
    • /
    • 2015
  • The ultimate purpose of a walking robot is to move to a designated spot and to perform a necessary manipulation. To perform various manipulations for a walking robot, it should have some kind of an extra manipulator. However, if the manipulation task for the robot is simple enough, the robot can perform the task by using its legs. Among various kinds of walking robots, a hexapod walking robot has relatively many legs, so it has the advantage of stability and walking speed. So, a hexapod walking robot can perform simple manipulation task by using its one or two legs while maintaining stability by using the rest of legs. In this paper, we deal with a simple manipulation task of holding a ball. We formulate the task as a redundancy resolution problem and propose a method for obtaining an optimal solution.

Dynamic Tumble Stability Analysis of Seabed Walking Robot in Forward Incident Currents (전방 입사조류에 대한 해저보행로봇의 동적 전복안정성 해석)

  • Jun, Bong-Huan;Shim, Hyungwon;Yoo, Seongyeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.743-749
    • /
    • 2015
  • In this paper, we describe the dynamic tumble-stability analysis of a seabed-walking robot named Crabster (CR200) in forward-incident currents. CR200 is designed to be operated in tidal-current conditions, and its body shape is also designed to minimize hydrodynamic resistances considering hydrodynamics. To analyze its tumble stability, we adopt the dynamic stability margin of a ground-legged robot and modify the definition of the margin to consider tidal-current effects. To analyze its dynamic tumble stability, we use the estimated hydrodynamic forces that act on the robot in various tidal-current conditions, and analyze the dynamic tumble-stability margin of the robot using the estimated results obtained for the various tidal-current conditions. From the analyses, we confirm the improved tumble stability of the robot according to the movement of the tumble axis caused by the supporting points of the legs.

Study on Optimal Design and Walking gait of Parallel Typed Walking Robot (병렬기구 보행로봇의 최적설계와 걸음새에 관한 연구)

  • Kim, Chi-Hyo;Park, Kun-Woo;Kim, Tae-Sung;Lee, Min-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.56-64
    • /
    • 2009
  • This paper presents a parallel typed walking robot which can walk in omni-direction and climb from a floor to a wall. We design a six D.O.F leg mechanism composed of three legs, which form a parallel mechanism with a base and a ground to generate arbitrary poses. Optimal design is conducted to maximize the walking space and the dexterity, which are normalized by the stroke of leg. Kinematic parameters are found to maximize the weighted optimal objectives. We design a triple parallel mechanism robot by inserting Stewart platform between the upper leg mechanism and the lower leg mechanism and examine the gaits when the robot walks on the ground and climbs from a floor to a wall. The analysis of walking space and dexterity for each gait shows that the triple parallel walking robot has a large walking space with a large stability region. We explore the possibility that the robot can climb from a floor to a wall. Investigating the gaits for the six steps proves that the robot can lift the foot up to the wall by combining the orientational walking space generated by three parallel mechanisms.

Gait Analysis on the Elderly Women with Foot Scan (Foot Scan 측정을 통한 노년 여성의 보행 분석)

  • Kim, Seong-Suk;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.15 no.4
    • /
    • pp.613-619
    • /
    • 2013
  • This study compares the gait characteristics of elderly women during barefoot walking and walking with sneakers. We measured foot angles, max foot pressure, peak plantar pressure of each plantar region, velocity of Center of Pressure(COP), and axis shifting of COP with an RS-scan system. Elderly women's foot angles were narrower when walking with sneakers than when barefoot walking. We found that the subtalar joint angle (representing ankle joint flexibility) affected walking stability. Regarding the peak plantar pressure of each foot region, pressures were high in the medial regions and the pressures greatly varied depending on the region measured during barefoot walking. The COP moved significantly faster when walking with sneakers than barefoot walking and suggests that elderly women walked faster in sneakers. Axis shifting of the COP decreased during walking with sneakers and indicated that gait balance improved when walking with sneakers. The findings of the present study can be utilized as foundational data for elderly women's gait characteristics as well as data for the production of functional footwear. Future research that focuses on various types of shoes, age groups, and gender are recommended for the development of more functional footwear for stable gaits.

The Effect of Action Observation with Observation Type on Limits of Stability and Dynamic Gait Ability in Stroke Patients (관찰형태에 따른 동작관찰 훈련이 뇌졸중 환자의 안정성 한계와 동적보행능력에 미치는 영향)

  • Yang, Yong-Pil;Kim, Su-Jin
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.1
    • /
    • pp.67-74
    • /
    • 2017
  • PURPOSE: The purpose of this study was to determine the effect of action observation with observation type on the limits of stability and dynamic gait ability in stroke patients. METHODS: The 20 stroke patients who participated in this study were randomly divided into two experimental groups who underwent training three times a week for 4 weeks. Their balance was tested as the limit of stability with Biorescue. Their Dynamic gait ability was tested with the Dynamic Gait Index (DGI) before the intervention, and after 4 weeks. Independent and paired t-tests were used to analyze the results. RESULTS: The results confirmed the limit of stability on the moving areas of the paralyzed and non-paralyzed sides. The limit of stability and dynamic gait index measurements confirmed that the moving area showed a significant difference after the intervention in the whole movement observation group (p<.05), but the partial movement observation group showed no significant difference (p>.05). A significant difference was also noted for the comparison between the both groups after the interventions (p<.05). The functional walking ability showed a significant difference when compared to the ability before the intervention, as determined by the changes in scores obtained for the dynamic gait index (p<.05). CONCLUSION: Interventions utilizing whole movement confirm that training improves stability and functional walking ability in stroke patients with disabilities in balance and walking ability.

Automatic Motion Generator and Simulator for Biped Walking Robots (이족 보행 로봇을 위한 자동 모션 제너레이터 및 시뮬레이터)

  • 최형식;전창훈;오주환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.948-953
    • /
    • 2004
  • For stable walking of various biped walking robots(BWR), we need to know the kinematics, dynamics and the Zero Moment of Point(ZMP) which are not easy to analyze analytically. In this reason, we developed a simulation program for BWRs composed of 4 degree-of-freedom upper-part body and 12 degree-of-freedom lower-part of the body. To operate the motion simulator for analyzing the kinematics and dynamics of BWES, inputs for the distance between legs, base angle, choice of walking type, gaits, and walking velocity are necessary. As a result, if stability condition is satisfied by the simulation, angle data for each actuator are generated automatically, and the data are transmitted to BWRS and then, they are actuated by the motion data. Finally, we validate the performance of the proposed motion simulator by applying it to a constructed small sized BWR.

  • PDF

Slope Detecting and Walking Algorithm of a Quadruped Robot Using Contact Forces (접촉 반력을 이용한 4 족 보행로봇의 경사면 감지 및 보행 알고리즘)

  • Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.138-147
    • /
    • 1999
  • For autonomous navigation, a legged robot should be able to walk over irregular terrain and adapt itself to variation of supporting surface. Walking through slope is one of the typical tasks for such case. Robot needs not only to change foot trajectory but also to adjust its configuration to the slope angle for maintaining stability against gravity. This paper suggests such adaptation algorithm for stable walking which uses feedback of reaction forces at feet. Adjusting algorithm of foot trajectory was studied with the estimated angel of slope without visual feedback. A concept of virtual slope angle was introduced to adjust body configuration against slope change of the supporting terrain. Regeneration of foot trajectory also used this concept for maintaining its stable walking against unexpected landing point.

  • PDF

Correlation between the Displacement of Center of Gravity and Lyapunov Exponent during Treadmill Walking (트레드밀 보행에서 무게중심 이동과 리아프노프 지수 사이의 상관관계)

  • Kim, Soo-Han;Park, Jung-Hong;Son, Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • The purpose of study is to investigate the correlation between the Lyapunov exponent (LE) and the displacement of the center of gravity (DCG) for clarifying walking stability on the treadmill. From fifteen young healthy subjects volunteered, lower extremity joint angles were recorded using a three-dimensional motion capture system with reflective markers. The anteroposterior DCG and the LE were calculated by a commercial software. A linear correlation between LE and DCG (p<0.05) showed that LEs compensated for walking distance on the treadmill walking. However, LEs were found to be independent of self-selected walking speeds by a negligible correlation between LE and the Froude number (p>0.05).

Intelligent Walking of Humanoid Robot for Stable Walking on a Decent (휴머노이드 로봇의 경사면 내리막 보행을 위한 지능보행 연구)

  • Kim, Dong-Won;Park, Gwi-Tae
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.197-202
    • /
    • 2006
  • We present the synergy effect of humanoid robot walking down on a slope and support vector machines in this paper. The biped robot architecture is highly suitable for the working in the human environment due to its advantages in obstacle avoidance and ability to be employed as human substitutes. But the complex dynamics in the robot and ground makes robot control difficult. The trajectory of the zero moment point (ZMP) in a biped walking robot is an important criterion used for the balance of the walking robots. The ZMP trajectory as dynamic stability of motion will be handled by support vector machines (SVM). Three kinds of kernels are also employed, and each result from these kernels is compared to one another.

  • PDF

Dynamic Stability Analysis of Patients with Degenerative Osteoarthritise during Walking (보행 시 퇴행성 관절염 환자의 동적 안정성 분석)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.21-30
    • /
    • 2008
  • The purpose of this study was to investigate the variability to compare local dynamic stability via a linear and nonlinear analysis during walking. Twenty four elderly males, 12 healthy elderly and 12 patients with osteoarthritise walked on a treadmill for 100 consecutive strides. Lyapunov exponent and correlation dimension and coefficient variation were calculated for the kinematic parameters to determine the dynamic stability during walking. The linear measures indicated that the healthy elderly demonstrated significantly higher variability in the ankle joint displacement. The nonlinear analysis revealed that COD for the knee joint angle were higher in patient with osteoarthritise. There were no coincidence in results between linear and nonlinear techniques over two groups. In light of nonlinear analysis, it was concluded that patients with osteoathritise showed higher local instability during walking.