• Title/Summary/Keyword: walking guide system

Search Result 25, Processing Time 0.023 seconds

A Study of Walking Guide for the Blind by Tactile Display (촉각제시에 의한 시각장애인 보행안내에 관한 연구)

  • Yoon, Myoung-Jong;Kang, Jeong-Ho;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.783-789
    • /
    • 2007
  • In this paper, firstly, we propose a generating method of the 3-D obstacle map using ultrasonic sensors. Secondly, we try to find the necessary stimulation conditions of compact tactile display device for effective transfer of obstacle information. The final goal of this research is the development of a walking guide system for the blind to walk safely. The walking guide system consists of a guide vehicle for the obstacle detection and a tactile display device for the transfer of the obstacle information. The guide vehicle, located in front of the walking blind, detects the obstacle using ultrasonic sensors. The processed information makes an obstacle map and transmits safe path and emergency situation to the blind by the tactile display. The tactile display device, located in the handle which is connected with the guide vehicle by cane, offers the processed obstacle information such as position, size, moving, shape of obstacle and safe path, etc. The concept of a walking guide system with tactile display is introduced, and experiments of 3-D obstacle detection and tactile perception are carried out and analyzed.

3D Detection of Obstacle Distribution and Mapping for Walking Guide of the Blind (시각 장애인 보행안내를 위한 장애물 분포의 3차원 검출 및 맵핑)

  • Yoon, Myoung-Jong;Jeong, Gu-Young;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.155-162
    • /
    • 2009
  • In walking guide robot, a guide vehicle detects an obstacle distribution in the walking space using range sensors, and generates a 3D grid map to map the obstacle information and the tactile display. And the obstacle information is transferred to a blind pedestrian using tactile feedback. Based on the obstacle information a user plans a walking route and controls the guide vehicle. The algorithm for 3D detection of an obstacle distribution and the method of mapping the generated obstacle map and the tactile display device are proposed in this paper. The experiment for the 3D detection of an obstacle distribution using ultrasonic sensors is performed and estimated. The experimental system consisted of ultrasonic sensors and control system. In the experiment, the detection of fixed obstacles on the ground, the moving obstacle, and the detection of down-step are performed. The performance for the 3D detection of an obstacle distribution and space mapping is verified through the experiment.

Pedestrian Network Models for Mobile Smart Tour Guide Services

  • Jwa, Jeong-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • The global positioning system (GPS)-enabled mobile phones provide location-based applications such as car and pedestrian navigation services. The pedestrian navigation services provide safe and comfortable route and path guidance for pedestrians and handicapped or elderly people. One of the essential components for a navigation system is a spatial database used to perform navigation and routing functions. In this paper, we develop modeling and categorization of pedestrian path components for smart tour guide services using the mobile pedestrian navigation application. We create pedestrian networks using 2D base map and sky view map in urban area. We also construct pedestrian networks and attributes of node, link, and POI using on-site GPS data and photos for smart pedestrian tour guide in the major walking tourist spots in Jeju.

3-D Positioning Using Stereo Vision and Guide-Mark Pattern For A Quadruped Walking Robot (스테레오 시각 정보를 이용한 4각보행 로보트의 3차원 위치 및 자세 검출)

  • ;;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.8
    • /
    • pp.1188-1200
    • /
    • 1990
  • In this paper, the 3-D positioning problem for a quadruped walking robot is investigated. In order to determine the robot's exterior position and orentation in a worls coordinate system, a stereo 3-D positioning algorithm is proposed. The proposed algorithm uses a Guide-Mark Pattern (GMP) specialy designed for fast and reliable extraction of 3-D robot position information from the uncontrolled working environment. Some experimental results along with error analysis and several means of reducing the effects of vision processing error in the proposed algorithm are disscussed.

  • PDF

Development of Obstacle Database Management Module for Obstacle Estimation and Clustering: G-eye Management System (장애물 추정 및 클러스터링을 위한 장애물 데이터베이스 관리 모듈 개발: G-eye 관리 시스템)

  • Min, Seonghee;Oh, Yoosoo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.344-351
    • /
    • 2017
  • In this paper, we propose the obstacle database management module for obstacle estimation and clustering. The proposed G-eye manager system can create customized walking route for blind people using the UI manager and verify the coordinates of the path. Especially, G-eye management system designed a regional information module. The regional information module can improve the loading speed of the obstacle data by classifying the local information by clustering the coordinates of the obstacle. In this paper, we evaluate the reliability of the walking route generated from the obstacle map. We obtain the coordinate value of the path avoiding the virtual obstacle from the proposed system and analyze the error rate of the path avoiding the obstacle according to the size of the obstacle. And we analyze the correlation between obstacle size and route by classifying virtual obstacles into sizes.

Survey on Obstacle Detection Features of Smart Technologies to Help Visually Impaired People Walk (시각장애인을 위한 이동보조시스템의 장애물 감지 특징 조사)

  • Min, Seonghee;Oh, Yoosoo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.3
    • /
    • pp.31-38
    • /
    • 2020
  • In this paper, we compare and analyze smart technologies and present six obstacle detection features to help visually impaired people walk. Traditionally, visually impaired people walk with the white cane or a guide dog. With the development of IoT technology, various smart walking aids systems have been developed. Those intelligent walking aids systems have obstacle-detecting systems and route-guidance systems. Many researchers are developing the walking aids system, which detects an obstacle and provides the obstacle information by haptic feedback. Also, they are designing the database server system to share the obstacle information. Particularly the composed system can quickly give an obstacle-avoidance route using shared obstacle information. Smart walking aids systems for visually impaired people will advance more rapidly by applying machine learning and intelligent systems.

Implementation of Behavior Notification System for Guide Dog Harness Using IMU and Accelerometer Sensor (IMU 및 가속도 센서를 이용한 안내견 하네스 행동 알림 시스템 구현)

  • Ahn, Byeong-Gu;Noh, Yun-Hong;Jeong, Do-Un
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In this paper, a behavior notification system of the harness of a guide dog is implemented for a blind person to get helps for environmental and situational awareness while walking with the guide dog. IMU modules is attached on the guide dog's harness saddle and the acceleration sensor belt is mounted on its thigh. Gait estimation and behavior judgement are performed by recording and analyzing the outputs of the sensors. Performance analysis for seven different kinds of behaviors has been done. The seven different behaviors, which the guide dog recognizes, are descending stairs, climbing stairs, uphill, downhill, stop, flat road, and selective disobedience. Results for the performance analysis show that the average success rate of the behavior rule estimation of harness of the guide dog is 92.78% and the behavior notification system can be effectively used in real situations.

Measurement of Energy Expenditure Through Treadmill-based Walking and Self-selected Hallway Walking of College Students - Using Indirect Calorimeter and Accelerometer (대학생의 트레드밀 걷기활동과 자율적 걷기활동을 통한 에너지소비량 측정 - 간접열량계와 가속도계를 이용하여 -)

  • Kim, Ye-Jin;Wang, Cui-Sang;Kim, Eun-Kyung
    • Korean Journal of Community Nutrition
    • /
    • v.21 no.6
    • /
    • pp.520-532
    • /
    • 2016
  • Objectives: The objective of this study was to assess energy expenditure and metabolic cost (METs) of walking activities of college students and to compare treadmill based walking with self-selected hallway walking. Methods: Thirty subjects (mean age $23.4{\pm}1.6years$) completed eight walking activities. Five treadmill walking activities (TW2.4, TW3.2, TW4.0, TW4.8, TW5.6) were followed by three self-selected hallway walking activities, namely, walk as if you were walking and talking with a friend: HWL (leisurely), walk as if you were hurrying across the street at a cross-walk: HWB (brisk) and walk as fast as you can but do not run: HWF (fast) were performed by each subject. Energy expenditure was measured using a portable metabolic system and accelerometers. Results: Except for HWF (fast) activity, energy expenditures of all other walking activities measured were higher in male than in female subjects. The lowest energy expenditure and METs were observed in TW2.4 ($3.65{\pm}0.84kcal/min$ and $2.88{\pm}0.26METs$ in male), HWL (leisurely) ($2.85{\pm}0.70kcal/min$ and $3.20{\pm}0.57METs$ in female), and the highest rates were observed in HWF (fast) ($7.72{\pm}2.81kcal/min$, $5.84{\pm}1.84METs$ in male, $6.65{\pm}1.57kcal/min$, $7.13{\pm}0.68METs$ in female). Regarding the comparison of treadmill-based walking activities and self-selected walking, the energy expenditure of HWL (leisurely) was not significantly different from that of TW2.4. In case of male, no significant difference was observed between energy costs of HWB (brisk), HWF (fast) and TW5.6 activities, whereas in female, energy expenditures during HWB (brisk) and HWF (fast) were significantly different from that of TW5.6. Conclusions: In this study, we observed that energy expenditure from self-selected walking activities of college students was comparable with treadmill-based activities at specific speeds. Our results suggested that a practicing leisurely or brisk walking for a minimum of 150 minutes per week by both male and female college students enable them to meet recommendations from the Physical activity guide for Koreans.

Developement and control of a sensor based quadruped walking robot

  • Bien, Zeungnam;Lee, Yun-Jung;Suh, Il-Hong;Lee, Ji-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1087-1092
    • /
    • 1990
  • This paper describes the development and control of a quadruped walking robot, named as KAISER-II. The control system with multiprocessor based hierachical structure is developed. In order to navigate autonomously on a rough terrain, an identification algorithm for robot's position is proposed using 3-D vision and guide-mark pattern Also, a simple attitude control algorithm is included using force sensors. Through experimental results, it is shown that the robot can not only walk statically on even terrain but also cross over or go through the artificially made obstacles such as stairs, horizontal bar and tunnel-typed one.

  • PDF