• Title/Summary/Keyword: walking characteristic

Search Result 91, Processing Time 0.026 seconds

A Study on the Characteristic of Staircase for Barrier-Free Architectural Environment (무장애 건축 환경을 위한 계단의 설계특성에 관한 연구)

  • Seong, Ki-Chang
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.10 no.2
    • /
    • pp.125-133
    • /
    • 2004
  • Safety, accessibility and distinguishment as the concept of architectural planning and design are demanded in staircases due to increase of the old aged people and disabled people's enlarged social participation. In this research is tried to provide the importance of vertical walking function at the design for the staircases. For this reason, structural elements of the staircases are studied in the ergonomic aspect for barrier-free environment and a comparative study is made on the regulations of the staircases in the inside and outside of the country in disabled & aged people's view. Based on this study, the quality of the staircases in public facilities and Apartments is analyzed. As the result, it has been proved that the vertical walking function of the staircases is the most fundamental characteristic of the staircases design before everything else.

  • PDF

Development of Torque Sensor for Measurement of Knee Joint Torque of Walking Assist Robot in Stroke Patients (뇌졸중환자 보행보조로봇의 무릎관절 토크측정을 위한 토크센서 개발)

  • Park, Jeong-Hyeon;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.105-111
    • /
    • 2018
  • In this paper, a torque sensor is designed and fabricated to measure the knee joint torque of a walking assist robot for stroke patients. The torque sensor sensing part was modeled on the link of the part connected to the knee joint motor. The torque capacity of the knee joint was calculated by simulation and the size of the torque sensor sensing part was designed using the finite element method. The torque sensor was fabricated by attaching a strain gauge to the sensing part. Characteristic experiments were conducted to characterize the torque sensor, and the torque sensor was calibrated to utilize it for the control of the walking assist robot. As a result of the characteristics test, the reproducibility error and the nonlinearity error of the torque sensor were 0.03% and 0.04%, respectively. Therefore, it is considered that the developed torque sensor can be used to measure the torque applied to the knee joint when walking on a walking assist robot.

Characteristic Comparison of Ground Reaction Force of the Taekwondo's Apkubi Motion and the Walking on Older Persons (고령자의 태권도 앞굽이서기 운동과 보행의 지면반력 특성비교)

  • Bae, Young-Sang;Kim, Ki-Man
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.289-296
    • /
    • 2011
  • The purpose of this study was to quantify the biomechanical characteristics of the ground reaction force(GRF) during the Taekwondo's Apkubi, one of the basic movement in Taekwondo and the walking. The GRF profiles under the stance foot of Apkubi movement and walking were directly measured in sample of 20 healthy older persons. In the anterior-posterior and vertical direction, the GRF of the Apkubi movement reached to the peak braking force at 10% of the normalized stance time percent and the peak driving force at 90% of stance time, but that of the walking reached to the peak braking force at 20% of stance time and the peak driving force at 80% of stance time. In vertical force, the GRF of the walking showed two peak values, but that of the Apkubi movement seemed three peak values. Moreover the first peak vertical force was significantly(t=6.085, p<.001) greater in the walking(about 1.8 times of body weight) than the Apkubi(about 1.4 times of body weight). The walking velocity was affected significantly(over p<.05) by the braking impulse, the peak braking force and the first peak vertical force. Futhermore the peak braking force in the Apkubi showed a significant effect on the Apkubi's stride length(p<.01). So, we concluded that the braking force after the right touch down, the stance foot on the ground contributed to move the leg forward.

A Measurement of Passengers' Walking Speed on Passenger Ship(I) (연안여객선 일반 승선자의 보행속도 실측(I) -대학 신입생을 대상으로 한 실험-)

  • Hwang, Kwang-Il;Koo, Jae-Hyeok;Jeon, Byeong-Cheong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.33-34
    • /
    • 2012
  • We need to develop intelligent smart card made unskilled general public's to the shelter on Passenger Ship. prior to development, we have to study passenger of characteristic. so we researched about domestic unskilled general public's of walking speed in refuge situation.

  • PDF

A Study on the Correlation between Static, Dynamic Standing Balance Symmetry and Walking Function in Stroke (뇌졸중 환자의 정적, 동적 선자세 균형 대칭성과 보행 기능의 상관관계 연구)

  • Kim, Joong-Hwi
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.73-81
    • /
    • 2012
  • Purpose: The aim of the present study was to measure the standing balance symmetry of stroke patients using a force-plate with computer system, and to investigate the correlation between the standing balance symmetry and that of the walking function in stroke patients. Methods: 48 patients with stroke (34 men, 14 women, $56.8{\pm}11.72$ years old) participated in this study. Static standing balance was evaluated by the weight distribution on the affected and the nonaffected lower limbs, sway path, sway velocity, and sway frequency, which reflected the characteristic of body sway in quiet standing. Dynamic standing balance was evaluated by anteroposterior and mediolateral sway angle, which revealed the limit of stability during voluntary weight displacement. Symmetry index of static standing balance, (SI-SSB) calculated by the ratio of the affected weight distribution for the nonaffected weight distribution, and symmetric index of dynamic standing balance (SI-SDB) by the ratio of the affected sway angle for the nonaffected sway angle. Functional balance assessed by a Berg balance scale (BBS), and the functional walking by 10m walking velocity, as well as the modified motor assessment scale (mMAS). Results: Static balance scales and SI-SSB was the only correlation with BBS (p<0.05). Dynamic balance scales and SI-DSB, not only was correlated with BBS, but also with 10m walking velocity and mMAS (p<0.01). Additionally, there was a significant difference between SI-SSB and that of SI-DSB (p<0.01). Conclusion: The balance and the walking function relate to real life in the stroke showed strong relationships with the dynamic standing balance symmetry in the frontal plane and the ability of anterior voluntary weight displacement in sagittal plane.

Development of lntelligent Shoe System to Measure Applied Force/Moment on the Sole of a Foot during Human Walking (사람 보행시 발바닥의 힘정보를 측정하기 위한 지능형 신발시스템 개발)

  • Kim, Gab-Soon;Kim, Hyeon-Min;Hu, Duck-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.79-86
    • /
    • 2008
  • This paper describes the development of wearing intelligent shoe system to measure applied forces and moments (ground reaction forces and moments) on the soles of feet during human walking. In order to walk safely, robot must get the intelligent feet with 6-axis force/moment sensors (Fx sensor (x-direction force sensor), Fy sensor, Fz sensor, Mx sensor (Mx : x-direction moment sensor), My sensor, and Mz sensor) and detect the forces and moments data from the sensors. And the feet must be controlled with the data and controllers. While a human is walking, the forces and moments should be measured and analyzed for robot's intelligent feet. Therefore, the wearing intelligent shoe system should be developed. In this paper, four 6-axis farce/moment sensors and two high speed measuring devices were designed and fabricated, and the wearing intelligent shoe system was made using these. The characteristic tests of the wearing intelligent shoe system were performed, and the forces and moments were detected using it.

Silhouette-based Gait Recognition for Variable Viewpoint (시점 변화에 강인한 실루엣 기반 게이트 인식)

  • 나진영;강성숙;정승도;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1883-1886
    • /
    • 2003
  • Gait is defined as "a manor of walking". It can used as a biometric measure to recognize known persons. Gait is an idiosyncratic feature determined by an individual's weight, stride length, and posture combined with characteristic motion. but its feature extracted from images varies with the viewpoint. In this paper, we propose a gait recognition method using a planer homography, which is robust for viewpoint variation. We represent an individual as key-silhouettes. And we endow key-silhouettes with weight calculated using the characteristic of PCA. Experimental result shows that proposed method is robust for viewpoint variation as images synthesised same viewpoint.

  • PDF

Clustering Analysis of Walking Characteristics of Elderly People for Use in Pedestrian Facilities Design (보행시설 설계시 활용을 위한 고령자 보행특성 군집화 연구)

  • ROH, Chang-Gyun;PARK, Bum jin;MOON, Byungsup
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.5
    • /
    • pp.409-420
    • /
    • 2016
  • Korea is expected to enter 'Super Aged Society' in 2026. However, as walking is the very basic human right of mobility, securing safe and convenient moving of elderly people comprising the majority of transportation vulnerable is thought to be the most basic welfare, which can be easily neglected. From this perspectives, this study provides the walking characteristics of elderly people to be used in design of pedestrian facilities. The analysis of the measurements using Motion Analysis Systems shows that all walking factors of elderly people is 75% level of the younger group. Elderly group shows slower movement, reduced shoulder movement and increased ankle movement compared to the others. Also, foots are risen less and ground repulsive force is increased. Cluster analysis shows that the group of the elderly shows high variability inside the group, and 2 or 3 clusters can be formed with factors of Walking, Balance and Muscles. These walking characteristics can be used in designing pedestrian road, slope and step height of roadway facilities.

A Study on the Design Criteria of Pedestrian Facility (Stairs) by Motion Analysis of Walking Parameters in the Elderly (고령자 보행변수 실측을 통한 보행시설물 설계기준 정립 1: 고령자 보행특성을 고려한 계단 챌면 높이 연구)

  • ROH, Chang-Gyun;PARK, Bum Jin
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.5
    • /
    • pp.396-408
    • /
    • 2017
  • In Korea, the number of elderly has been increasing rapidly. So it is also expected that the economic activity and the trip frequency of the elderly will increase. On the other hand, elderly related accidents such as falls during walking are steadily increasing and the satisfaction about pedestrian environment of elderly is very low. In this paper, we found one of the reasons for these dissatisfaction in pedestrian facility, which is not considering the walking ability (about 75% of non-elderly person) of the elderly. So, we analyze the kinematic walking characteristics of the elderly with the motion analysis system, when the elderly use stairs. As a result of analysis of various walking variables, the current standard for stairway height in Korean law (18cm) requires excessive force to elderly so it was difficult for elderly to keep the balance of the body in ascending and descending walk of stairs. In this paper, we propose the stair design criteria through the cluster analysis of walking parameters reflecting the gait characteristics of the elderly. This change is not a big for non-elderly person, but it can promote more socioeconomic activities for the elderly.

Lower Extremities' Joint Stability during the Elderly Woman's Walking

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.1
    • /
    • pp.45-52
    • /
    • 2017
  • Objective: The aim of this study was to investigate the periodicity of the lower extremity joint flexion/extension angle to compare the local stability between young and elderly women during walking on a treadmill. Method: Eighteen young women (mean $age=21.2{\pm}1.6y$; mean $mass=57.1{\pm}6.1kg$; mean $height=1.61{\pm}0.04m$) and 18 elderly women (mean $age=66.4{\pm}1.2y$; mean $mass=55.4{\pm}8.3kg$; mean $height=1.56{\pm}0.04m$) participated in this study. Approximate entropy (ApEn) was used to determine the periodicity in the lower limb joint angles. Results: The ApEn values of the two groups were statistically greater in the surrogate data test than in the original time series data (p<.05). The periodicity of the hip and ankle flexion/extension angles decreased in the elderly women group compared with the young women group (p<.05). The periodicity of the lower extremity joint flexion/extension angle showed that the ankle joint increased dominatingly in both groups (p<.05); the hip joint decreased compared with the knee joint in the young women group; and the knee joint decreased compared with the hip joint in the elderly women group (p<.05). Conclusion: These results suggest that the lower extremity joint flexion/extension angles of the young and elderly women during walking contained random noises as well as biological signals. In addition, the differences in the periodicity in the lower extremity joint between the young and elderly women may provide some insight in predicting potential falls and be used as a characteristic indicator for determining local stability in elderly women during walking.