• 제목/요약/키워드: walking and one

검색결과 845건 처리시간 0.024초

파워워킹과 일반보행의 운동학적 및 EMG 비교분석 (The Comparative Analysis of Kinematic And Emg on Power Walking and Normal Gait)

  • 조규권;김유신;김은정
    • 한국운동역학회지
    • /
    • 제16권2호
    • /
    • pp.85-95
    • /
    • 2006
  • The purpose of this study of which 10 University students in their twenties are the objects was to examine the causal differences of kinematic and electromyography during power walking and normal gait. We came to the following conclusions. 1) It took less time to stance phase, swing phase and whole gait time during power walking compared with normal gait. 2) During power walking, the step length and step length and lower limb length are longer than that of normal gait. 3) During power walking, ankle joint angle became more plantar flexed at LIC and RTO, knee joint angle become more flexed, so did hip joint angle at LIC and RTO. Besides during power walking the shoulder joint angle movement was bigger and elbow joint angle was more flexed as the trait of power walking. 4) During power walking, through out the phase the muscle activity of all muscle was higher expecially the muscle activity of Biceps brachii, gastrocnemius medialis, gastrocnemius lateralis, Soleus was higher. Therefore during power walking, one's scope of activity and muscle activity is relatively higher than those of normal gait, so power walking helps one strengthen muscular power and energy metabolism. This will be useful information for those who are interested in diet and well-being.

4지 로봇의 최적 머니퓰레이션에 관한 연구 (A Study on the Optimal Solution for the Manipulation of a Robot with Four Limbs)

  • 이지영;성영휘
    • 전기학회논문지
    • /
    • 제64권8호
    • /
    • pp.1231-1239
    • /
    • 2015
  • We developed a robot that has four limbs, each of which has the same kinematic structure and has 6 degrees of freedom. The robot is 600mm high and weighs 4.3kg. The robot can perform walking and manipulating task by using the four limbs selectively. The robot has three walking patterns. The first one is biped walking, which uses two rear limbs as legs and two front limbs as arms. The second one is biped walking with supporting arms, which is basically biped walking but uses two arms as supporting legs for increasing stability of the robot. The last one is quadruped walking, which uses all the four limbs as legs. When a task for the robot is given, the robot approaches the task point by selecting an appropriate walking pattern among three walking patterns and performs the task. The robot has many degrees of freedom and is a redundant system for a three dimensional task. We propose a redundancy resolution method, in which the robot’s translational move to the task point is modeled as a prismatic joint and optimal solutions are obtained by optimizing some performance criteria. Several simulations are performed for the validity of the proposed method.

Walking Robot With 4 Legs

  • Jang, Sung-Hwan;Lee, Ja-Yong;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.123.4-123
    • /
    • 2001
  • This paper explains the walking robot with 4 legs. One leg is composed of 4 dc server motors and have 4 d.o.f. This walking robot has simple structure using "the principle of lever". The structure of robot models the 4 legs´ animal such as dog. The walking patterns is various and complex. With inspecting the walking dogs, the walking motions implemented by patterns. The center of mass is important of this type robot. The significant issue of walking is weight. As the weight is lighter, so the robot well walks. The method of walking is patterns.

  • PDF

The Evaluation of Beneficial Walking Elements to Identify Motivations for Walking Habit Formation

  • Max Hanssen;Muneo Kitajima;SeungHee Lee
    • 감성과학
    • /
    • 제26권2호
    • /
    • pp.117-128
    • /
    • 2023
  • This study aimed to build on past findings about differences in personal walking experiences by demonstrating what elements were beneficial to participants with different walking habits. Accordingly, this study established the relationships between valued walking elements and people's motivation to walk, by dividing participants into three groups: Group W for people with a walking habit, Group HW for people who walk occasionally but not regularly, and Group NW for people who do not walk habitually. Participants walked a familiar and an unfamiliar route with a wearable device that recorded their heart-rate variability and electrodermal activity. Changes in the biometric data helped to identify the defining moments in each participant's walk. Participants discussed these moments in one-on-one interviews with a researcher to pinpoint their valued walking elements. As a result, this study classified walking elements into six themes: "Surroundings," "Social," "Exploration," "Route Plan," "Physical Exercise," and "Mental Thinking." A walking habit development model was made to show how "Route Plan" and "Exploration" were beneficial to Group NW, "Social" and "Surroundings" were beneficial to Group HW, and "Route Plan," "Mental Thinking," and "Physical Exercise" were beneficial to Group W.

생애주기별 1인 가구의 걷기 실천과 행복감 차이 (Differences in Walking Practices and Happiness among One-person Households by Life Cycles)

  • 신미아
    • 산업융합연구
    • /
    • 제21권9호
    • /
    • pp.67-75
    • /
    • 2023
  • 본 연구는 생애주기별 1인 가구의 걷기 실천과 행복감의 차이를 알아보기 위한 것이다. 2021년 지역사회건강조사 자료를 활용한 이차분석 연구로 수집된 자료는 SPSS 25.0 프로그램을 이용하여 복합표본 통계분석을 시행하였다. 그 결과, 노년기는 청년기와 중년기에 비해 남성보다 여성이 많았고 저학력, 비경제활동, 기초생활수급 및 7시간 미만의 수면이 많았다. 1인 가구의 청년기, 중년기, 노년기 모두 걷기 실천이 걷기 미실천 보다 낮았다. 1인 가구의 행복감 정도는 성인기 6.69 점, 노년기 6.43점, 중년기 6.19점으로 중년기의 행복감이 가장 낮았다. 1인 가구의 청년기, 중년기, 노년기 모두 걷기 실천에 따라 행복감에 유의한 차이가 있었다. 따라서 1인 가구의 행복감을 증진시키기 위해서 걷기 실천을 독려하고 이를 위한 사회적, 복지적 및 정책적인 방안이 마련되어야 할 것이다.

노인의 균형 및 보행과 족관절 근력과의 상관관계 (Correlations between Muscle Strength of the Ankle and Balance and Walking in the Elderly)

  • 김건;서삼기;윤희종;김태열;이정우
    • The Journal of Korean Physical Therapy
    • /
    • 제20권1호
    • /
    • pp.33-40
    • /
    • 2008
  • Purpose: This study was designed to investigate the correlations between muscle strength of the ankle and balance, walking in the elderly. Methods: Thirty-nine subjects were selected from a population of female volunteers. Measurement of balance ability included evaluation of timed "up and go", functional reach, and a one leg standing test. Measurement of walking analysis included evaluation of cadence, stride length, step length, and walking speed. Maximal voluntary isometric contraction (MVIC) of the ankle muscle strength was measured by use of a dynamometer. Results: For balance, there were significant negative correlations between timed "up and go" and the MVIC of the ankle dorsiflexor. There were significant positive correlations between one leg standing with the eyes closed and the MVIC of the ankle dorsiflexor. For walking, there were significant positive correlations between cadence, walking speed and the MVIC of the ankle dorsiflexor. Conclusion: This study showed that there were close relationships between muscle strength of the ankle dorsiflexor and walking and balance in the elderly.

  • PDF

지능형 제어기법 및 센서 인터페이스를 이용한 이족 보행 로봇의 동적보행 제어 (Dynamic Walking Control of Biped Walking Robot using Intelligent Control Method and Sensor Interface)

  • 고재원;임동철
    • 전기학회논문지P
    • /
    • 제56권4호
    • /
    • pp.161-167
    • /
    • 2007
  • This paper introduces a dynamic walking control of biped walking robot using intelligent sensor interface and shows an intelligent control method for biped walking robot. For the dynamic walking control of biped walking robot, serious motion controllers are used. They are main controller(using INTEL80C296SA MPU), sub controller(using TMS320LF2406 DSP), sensor controller(using Atmega128 MPU) etc. The used sensors are gyro sensor, tilt sensor, infrared sensor, FSR sensor etc. For the feasibility of a dynamic walking control of biped walking robot, we use the biped walking robot which has twenty-five degrees of freedom(D.O.F.) in total. Our biped robot is composed of two legs of six D.O.F. each, two arms of five D.O.F. each, a waist of two D.O.F., a head of one D.O.F.

소형사각 보행로보트의 제작과 정적걸음새의 구현 (Design of Small Scale Quadruped Walking Robot and Realiazion of Static Gait)

  • 배건우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.398-402
    • /
    • 1996
  • This paper addresses the design and the gait control of quadruped walking robot. First, we concern the mechanical and electronical(control system) hardware of walking robot, and the second is the results of experiments. The walking robot is the most suitable form to substitute fot human being. So walking robot is worthy of research. The quadruped walking robot and control system is the simplest type of walking robot, therefore we designed a small seale robot for realization of static gait. The robot is designed commpactly and its legs are constructed parallel link type and able to move freely in space. Control system consists of one upper level controller and four lower level controllers. The upper level controller plans the walking path and commands the low level controllers to follow the planned path. The main function of low level cotrollers is control of motors. Total number of motors is twealve and they operate four legs. And robot is ordered to walk and realize static wave gait.

  • PDF

균일하지 않은 지면 보행을 위한 얀센 메커니즘 기반의 보행로봇 설계 (Design of Walking Robot Based on Jansen Mechanism for Non-uniform Ground Surface)

  • 정윤우
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.481-484
    • /
    • 2016
  • Jansen mechanism is basic principal of walking robot. Because that mechanism have many link, walking robot can walk like animals. One of the feature is that space is existed between leg of walking robot and ground surface. So, it can walk through the non-uniform ground surface that have obstacle. In this paper, I will suggest design of walking robot that can walk on non-uniform ground surface effectively based on Jansen mechanism.

  • PDF

구조 특성을 반영한 인간형 로봇을 위한 실시간 CoM/ZMP 궤적 변환 방법 (Real-Time CoM/ZMP Trajectory Transformation Method for Humanoid Robots Considering Structure Characteristics)

  • 홍석민
    • 한국항행학회논문지
    • /
    • 제21권1호
    • /
    • pp.132-137
    • /
    • 2017
  • 본 논문에서는 로봇의 구조나 보행 상황을 반영해 하나의 보행 패턴을 다른 보행 패턴으로 변환하게 해주는 영모멘트 점 (ZMP; zero moment point)와 질량 중심 (CoM; center of mass)의 실시간 변환 방법을 제안한다. 일반적으로 휴머노이드 로봇은 높이와 질량과 같은 자체적인 구조 특성을 가지고 있다. 이러한 구조적 특성으로 인해 인간 또는 휴머노이드 로봇으로부터 측정되거나 생성되어진 CoM / ZMP 보행 패턴을 다른 로봇에 직접 적용하는 것은 어렵다. 이를 위하여 간단한 휴머노이드 로봇 모델인 cart-table model을 사용해 보폭의 길이, 보행 시간, CoM 높이 변화에 따라 보행 패턴의 특성을 분석한다. 그러한 분석으로부터 변환 방정식을 유도하고 시뮬레이션을 통해 제안된 방법을 검증한다.