• Title/Summary/Keyword: wake splitter plates

Search Result 2, Processing Time 0.019 seconds

Flow Control Around a Circular Cylinder Using Two Splitter Plates (두 개의 분할판을 이용한 원형 단면 실린더의 유동제어)

  • Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.127-134
    • /
    • 2004
  • Control of drag force on a circular cylinder using multiple detached splitter plates is numerically studied for laminar flow Two splitter plates with the same length as the cylinder diameter (d) are placed horizontally in the upstream of the cylinder and in the near-wake region, respectively. Their positions are described by the gap ratios (G$_1$/d, G$_2$/d), where G$_1$ represents the gap between the cylinder stagnation point and the rear edge of the upstream splitter plate, and G$_2$ represents the gap between the cylinder base point and the leading edge of the rear splitter plate. The drag varies with the two gap ratios; it has the minimum value at a certain set of gap ratios for each Reynolds number The upstream splitter plate decreases the stagnation pressure, while the rear splitter plate increases the base pressure by suppressing vortex shedding. This combined effect causes a significant drag reduction on the cylinder Particularly, the drag sharply increases past an optimum G$_2$/d; this seems to be related to a sudden change in bubble size in the wake region.

Evaluation of base shield plates effectiveness in reducing the drag of a rough circular cylinder in a cross flow

  • EL-Khairy, Nabil A.H.
    • Wind and Structures
    • /
    • v.11 no.5
    • /
    • pp.377-389
    • /
    • 2008
  • An experimental investigation has been conducted to determine the effectiveness of base shield plates in reducing the drag of a rough circular cylinder in a cross flow at Reynolds numbers in the range $3{\times}10^4{\leq}Re{\leq}10.5{\times}10^4$. Three model configurations were investigated and compared: a plane cylinder (PC), a cylinder with a splitter plate (MC1) and a cylinder fitted with base shield plates (MC2). Each configuration was studied in the sub and supercritical flow regimes. The chord of the plates, L, ranged from 0.22 to 1.50D and the cavity width, G, between the plates was in the range from 0 to 0.93D. It is recognized that base shield plates can be employed more effectively than splitter plates to reduce the aerodynamic drag of circular cylinders in both the sub- and supercritical flow regimes. For subcritical flow regime, one can get 53% and 24% drag reductions for the MC2 and MC1 models with L/D=1.0, respectively, compared with the PC model. For supercritical flow regime however, the corresponding drag reductions are 38% and 7%.