• Title/Summary/Keyword: wake separation

Search Result 147, Processing Time 0.025 seconds

Drag Reduction Characteristics of Cylinder Having Square Dimpled Surface (표면에 정방형 딤플을 가진 원추의 항력저감 특성)

  • 노기덕;박지태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.233-239
    • /
    • 2002
  • The drag reduction of the cylinder having square dimpled surface was studied by the measuring the drag force acting on the cylinder. The level of the drag reduction was changed by the arrangement shape of the square grooves and Reynolds number. The drag of the cylinder was reduced about 28% with proper arrangement of square grooves. The flow field around the cylinder having grooves at the minimum drag was visualized by using post color ink in order to see the influence of the grooves. In this case, the separation points were silted rearward and the wake region was smaller than that of the smooth cylinder.

Calculation of the mean flow past circular cylinders using an improved separation model (개선된 박리 모델을 이용한 원통 주위 유동장 계산)

  • 최도형;신승용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.877-883
    • /
    • 1987
  • A new improved inviscid separation model to calculate the mean flow past circular cylinders is proposed. The wake region is modeled by a pair of vortex sheets which emerge from the separation points and are allowed to move freely with the local stream. The vortex strength assumes a constant value for some initial distance which is related to the pressure drag and gradually decreases to zero as the sheet moves farther away from the body. This vorticity distribution automatically takes care of the length parameter which has been one of the deficiencies in the existing models. The procedure is tested against various experimental data and the agreement is quite good for both sub and super-critical regimes. The comparison with an existing model is also given.

Penetration Model in Soil Considering J-hook Trajectory (토양 내 J-hook 궤적을 고려한 침투해석 모델 개발)

  • Sung, Seung-Hun;Ji, Hun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • This study proposes a penetration model in soil considering the wake separation and reattachment based on the integrated force law (IFL). Rigid body dynamics, the IFL, and semi-empirical resistance function about soil are utilized to formulate the motion of the hard projectile. The model can predict the trajectory in soil considering the spherical cavity expansion phenomenon under various oblique angles and angles of attack (AOA). The Mohr-Coulomb yield model is utilized as the resistance function of the soil. To confirm the feasibility of the proposed model, a comparative study is conducted with experimental results described in the open literature. From the comparative study, the penetration depth estimated from the proposed model had about 13.4% error compared to that of the experimental results. In general, the finite element method is widely used to predict the trajectory in soil for a projectile. However, it takes considerable time to construct the computational model for the projectile and perform the numerical simulation. The proposed model only needs to the dimension of the projectile and can predict the trajectory of the projectile in a few seconds.

A comparative investigation of the TTU pressure envelope -Numerical versus laboratory and full scale results

  • Bekele, S.A.;Hangan, H.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.337-346
    • /
    • 2002
  • Wind tunnel pressure measurements and numerical simulations based on the Reynolds Stress Model (RSM) are compared with full and model scale data in the flow area of impingement, separation and wake for $60^{\circ}$ and $90^{\circ}$ wind azimuth angles. The phase averaged fluctuating pressures simulated by the RSM model are combined with modelling of the small scale, random pressure field to produce the total, instantaneous pressures. Time averaged, rsm and peak pressure coefficients are consequently calculated. This numerical approach predicts slightly better the pressure field on the roof of the TTU (Texas Tech University) building when compared to the wind tunnel experimental results. However, it shows a deviation from both experimental data sets in the impingement and wake regions. The limitations of the RSM model in resolving the intermittent flow field associated with the corner vortex formation are discussed. Also, correlations between the largest roof suctions and the corner vortex "switching phenomena" are observed. It is inferred that the intermittency and short duration of this vortex switching might be related to both the wind tunnel and numerical simulation under-prediction of the peak roof suctions for oblique wind directions.

A method for predicting the aerodynamic performance of low-speed airfoils (저속익형의 공기역학적 성능예측의 한 방법)

  • Yu, Neung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.240-252
    • /
    • 1998
  • The purpose of this study is to develop a method for predicting the aerodynamic performance of the low speed airfoils in the 2-dimensional, steady and viscous flow. For this study, the airfoil geometry is specified by adopting the longest chord line system and by considering local surface curvature. In case of the inviscid incompressible flow, the analysis is accomplished by the linearly varying strength vortex panel method and the Karman-Tsien correction law is applied for the inviscid compressible flow analysis. The Goradia integral method is adopted for the boundary layer analysis of the laminar and turbulent flows. Viscous and inviscid solutions are converged by the Lockheed iterative calculating method using the equivalent airfoil geometry. The analysis of the separated flow is performed using the Dvorak and Maskew's method as the basic method. The wake effect is also considered by expressing its geometry using the formula of Summey and Smith when no separation occurs. The computational efficiency is verified by comparing the computational results with experimental data and by the shorter execution time.

Experimental and numerical studies of the flow around the Ahmed body

  • Tunay, Tural;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.515-535
    • /
    • 2013
  • The present study aims to investigate characteristics of the flow structures around the Ahmed body by using both experimental and numerical methods. Therefore, 1/4 scale Ahmed body having $25^{\circ}$ slant angle was employed. The Reynolds number based on the body height, H and the free stream velocity, U was $Re_H=1.48{\times}10^4$. Investigations were conducted in two parts. In the first part of the study, Large Eddy Simulation (LES) method was used to resolve the flow structures around the Ahmed body, numerically. In the second part of the study the particle image velocimetry (PIV) technique was used to measure instantaneous velocity fields around the Ahmed body. Time-averaged and instantaneous velocity vectors maps, streamline topology and vorticity contours of the flow fields were presented and discussed in details. Comparison of the mean and turbulent quantities of the LES results and the PIV results with the results of Lienhart et al. (2000) at different locations over the slanted surface and in the wake region of the Ahmed body were also given. Flow features such as critical points and recirculation zones in the wake region downstream of the Ahmed body were well captured. The spectra of numerically and experimentally obtained stream-wise and vertical velocity fluctuations were presented and they show good consistency with the numerical result of Minguez et al. (2008).

The Analysis by Postretirement of baby boom generation

  • Kim, Pan-Jin
    • The Journal of Economics, Marketing and Management
    • /
    • v.5 no.2
    • /
    • pp.33-39
    • /
    • 2017
  • As the aging population geworsened by the a of the low fertility rate in the wake of the birth of the low birth rate, the rapid increase in the retirement age of the baby boomers in the wake of the birth of the Korean War is a significant indication of the separation of the aged and the role of the economically rich and the role of the role of the economically rich. Therefore, this study aims to address issues and countermeasures. The study aims to provide basic data for the future life of the baby boom generation by examining the problems and responses to the economic activity after the retirement activity of the baby boomers. The research suggests that the limit was limited to the retirement age of the baby boomer generation in order to boost the employment of the elderly. Due to the lack of exploration of the exploratory research, the lack of analysis of exploratory facts is the biggest limitation of the analysis. So, further analysis of this will lead to meaningful studies. Looking at the composition of this study, the introduction of the study included the necessity and purpose of the study. The focus on the point was on the concepts and characteristics of the baby boomer, and analyzed the characteristics of the economic activity and analyses and analyses of domestic and international cases. In conclusion, the issue was drawn up and the alternatives were sought.

Numerical Investigation on Interference Effects of Tandem Rotor in Forward Flight (전진 비행하는 탠덤로터의 간섭효과에 대한 수치적 연구)

  • Lee, Jae-Won;Oh, Se-Jong;Yee, Kwan-Jung;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.615-626
    • /
    • 2009
  • The objective of this study is to investigate the interference effects due to tandem rotor's overlap in the forward flight. To resolve the instabilities caused by close proximity of the wake to the blade surface, the field velocity approach is implemented to the existing unsteady panel code coupled with a time-marching free wake model. The modified code is then used to investigate the effects of the selected parameters on the forward flight performance of the tandem rotor. The calculated results for rotor separation effect indicate that stagger(d/D) appears to have little effects on the forward flight performance at high advance ratio and the square of gap(H/D) is inversely proportional to overlap induced power factor. In addition, it is also shown that the overlap induced power factor increases to a certain extent and decrease back as the advance ratio increases.

Near-wake Measurements of an Oscillating NACA 0012 Airfoil (진동하는 NACA 0012 에어포일의 근접후류 측정)

  • Kim, Dong-Ha;Kim, Hak-Bong;Jang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.1-8
    • /
    • 2006
  • An experimental study was carried out in order to investigate the influence of Reynolds number on the near-wake of an oscillating airfoil. An NACA 0012 airfoil was sinusoidally pitched at the quarter chord point, and is oscillated over a range of instantaneous angles of attack of $\pm$6$^{\circ}$. An X-type hot-wire probe was employed to measure the near-wake of an oscillating airfoil, and the smoke-wire visualization technique was used to examine the flow properties of the boundary layer. The free-stream velocities were 1.98, 2.83 and 4.03 m/s and the corresponding chord Reynolds numbers were 2.3${\times}10^4$, 3.3$\times$104 and 4.8${\times}10^4$, respectively. The frequency of airfoil oscillation was adjusted to fix a reduced frequency of K=0.1. The results show that the properties of the boundary layer and the near-wake can dramatically be distinguished in the range of Reynolds numbers between 2.3${\times}10^4$ and 3.3${\times}10^4$, on the other hand, it is similar in the cases of Re=3.3$\times$104 and 4.8$\times$104. This is caused by that the unsteady separation point is dramatically delayed in case of Re= 2.3${\times}10^4$.

Impact of the lateral mean recirculation characteristics on the near-wake and bulk quantities of the BARC configuration

  • Lunghi, Gianmarco;Pasqualetto, Elena;Rocchio, Benedetto;Mariotti, Alessandro;Salvetti, Maria Vittoria
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.115-125
    • /
    • 2022
  • The high-Reynolds number flow around a rectangular cylinder, having streamwise to crossflow length ratio equal to 5 is analyzed in the present paper. The flow is characterized by shear-layer separation from the upstream edges. Vortical structures of different size form from the roll-up of these shear layers, move downstream and interact with the classical vortex shedding further downstream in the wake. The corresponding mean flow is characterized by a recirculation region along the lateral surface of the cylinder, ending by mean flow reattachment close to the trailing edge. The mean flow features on the cylinder side have been shown to be highly sensitive to set-up parameters both in numerical simulations and in experiments. The results of 21 Large Eddy Simulations (LES) are analyzed herein to highlight the impact of the lateral mean recirculation characteristics on the near-wake flow features and on some bulk quantities. The considered simulations have been carried out at Reynolds number Re=DU_∞/ν=40 000, being D the crossflow dimension, U_∞ the freestream velocity and ν the kinematic viscosity of air; the flow is set to have zero angle of attack. Some simulations are carried out with sharp edges (Mariotti et al. 2017), others with different values of the rounding of the upstream edges (Rocchio et al. 2020) and an additional LES is carried out to match the value of the roundness of the upstream edges in the experiments in Pasqualetto et al. (2022). The dimensions of the mean recirculation zone vary considerably in these simulations, allowing us to single out meaningful trends. The streamwise length of the lateral mean recirculation and the streamwise distance from the upstream edge of its center are the parameters controlling the considered quantities. The wake width increases linearly with these parameters, while the vortex-shedding non-dimensional frequency shows a linear decrease. The drag coefficient also linearly decreases with increasing the recirculation length and this is due to a reduction of the suctions on the base. However, the overall variation of C_D is small. Finally, a significant, and once again linear, increase of the fluctuations of the lift coefficient is found for increasing the mean recirculation streamwise length.