• Title/Summary/Keyword: wake separation

Search Result 147, Processing Time 0.03 seconds

A Study on the Near Wake of a Square Cylinder Using Particle Image Velocimetry (III) - Phase Average - (PIV기법을 이용한정사각실린더의 근접후류에 관한 연구 (III) - 위상평균유동장 -)

  • Lee, Man-Bok;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1527-1534
    • /
    • 2001
  • Phase averaged velocity fields in the near wake region behind a square cylinder have been (successfully) obtained using randomly sampled PIV data sets. The Reynolds number based on the flow velocity and the vertex height was 3,900. To identify the phase information, we examined the magnitude of circulation and the center of peak vorticity. The center of vorticity was estimated from lowpass filtered vorticity contours (LES decomposition) adopting a sub-pixel searching algirithm. Due to the sinusoidal nature of firculation which is closely related to the instantaneous vorticity, the location of peak voticity fits well with a sine curve of the circulation magnitude. Conditionally-averaged velocity fields represent the barman vortex shedding phenomenon very well within 5 degrees phase uncertainty. The oscillating nature of the separated shear layer and the separation bubble at the top surface are clearly observed. With the hot-wire measurements of Strouhal frequency, we found thats the convection velocity changes its magnitude very rapidly from 25 to 75 percent of the free stream velocity along the streamwise direction when the flow passes by the recirculation region.

Numerical Analysis of the Three-Dimensional Wake Flow and Acoustic Field around a Circular Cylinder

  • Kim, Tae-Su;Kim, Jae-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.319-325
    • /
    • 2010
  • For decades, researchers have rigorously studied the characteristics of flow traveling around blunt objects in order to gain greater understanding of the flow around aircraft, vehicles or vessels. Many different types of flow exist, such as boundary layer flow, flow separation, laminar and turbulent flow, vortex and vortex shedding; such types are especially observed around circular cylinders. Vortex shedding around a circular cylinder exhibits a two-dimensional flow structure possessing a Reynolds number within the range of 47 and 180. As the Reynolds number increases, the Karman vortex changes into a three-dimensional flow structure. In this paper, a numerical analysis was performed examining the flow and aero-acoustic field characteristics around a circular cylinder using an optimized high-order compact scheme, which is a high order scheme. The analysis was conducted with a Reynolds number ranging between 300 and 1,000, which belongs to B-mode flow around a circular cylinder. For a B-mode Reynolds number, a proper spanwise length is analyzed in order to obtain the characteristics of three-dimensional flow. The numerical results of the Strouhal number as well as the lift and drag coefficients according to Reynolds numbers are coincident with the other experimental results. Basic research has been conducted studying the effects an unstable three-dimensional wake flow on an aero-acoustic field.

Interaction between Turbulent Boundary Layer and Wake behind an Elliptic Cylinder at Incidence (앙각을 가진 타원형 실린더 후류와 평판 경계층의 상호작용에 대한 연구)

  • Choi, Jae-Ho;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.465-471
    • /
    • 2000
  • The flow characteristics around an elliptic cylinder with axis ratio of AR=2 located near a flat plate were investigated experimentally to study the interaction between the cylinder wake and the turbulent boundary layer. The pressure distributions on the cylinder surface and on the flat plate were measured with varying the angle of attack of the cylinder. In addition, the velocity profiles of wake behind the cylinder were measured using a hot-wire anemometry As the angle of attack increases, the location of peak pressure on the windward and leeward surfaces of the cylinder moves toward the rear and front of the cylinder, respectively. At positive angles of attack, the position of the minimum pressure on the flat plate surface is moved downstream, but it is moved upstream at negative angles of attack. With increasing the angle of attack, the vortex shedding frequency is gradually decreased and the critical angel of attack exists in terms of the gap ratio. By installing the elliptic cylinder at negative angle of attack, the turbulent boundary layer over the flat plate is disturbed more than that at positive incidence. This may be attributed to the shift of separation point on the lower surface of the cylinder according to the direction of the angle of attack.

  • PDF

Interaction between Turbulent Boundary Layer and Wake Behind an Elliptic Cylinder at Incidence (앙각을 가진 타원형 실린더 후류와 평판경계층의 상호작용에 대한 연구)

  • Choi, Jae-Ho;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.976-983
    • /
    • 2000
  • The flow characteristics around an elliptic cylinder with axis ratio of AR=2 located near a flat plate were investigated experimentally to study the interaction between the cylinder wake and the turbulent boundary layer. The pressure distributions on the cylinder surface and on the flat plate were measured with varying the angle of attack of the cylinder. In addition, the velocity profiles of wake behind the cylinder were measured using a hot-wire anemometry As the angle of attack increases, the location of peak pressure on the windward and leeward surfaces of the cylinder moves toward the rear and front of the cylinder, respectively. At positive angles of attack, the position of the minimum pressure on the flat plate surface is moved downstream, but it is moved upstream at negative angles of attack. With increasing the angle of attack, the vortex shedding frequency is gradually decreased and the critical angle of attack exists in terms of the gap ratio. By installing the elliptic cylinder at negative angle of attack, the turbulent boundary layer over the flat plate is disturbed more than that at positive incidence. This may be attributed to the shift of separation point on the lower surface of the cylinder due to the presence of a ground plate nearby.

Vehicle-induced aerodynamic loads on highway sound barriers part 2: numerical and theoretical investigation

  • Wang, Dalei;Wang, Benjin;Chen, Airong
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.479-494
    • /
    • 2013
  • The vehicle-induced aerodynamic loads bring vibrations to some of the highway sound barriers, for they are designed in consideration of natural wind loads only. As references to the previous field experiment, the vehicle-induced aerodynamic loads is investigated by numerical and theoretical methodologies. The numerical results are compared to the experimental one and proved to be available. By analyzing the flow field achieved in the numerical simulation, the potential flow is proved to be the main source of both head and wake impact, so the theoretical model is also validated. The results from the two methodologies show that the shorter vehicle length would produce larger negative pressure peak as the head impact and wake impact overlapping with each other, and together with the fast speed, it would lead to a wake without vortex shedding, which makes the potential hypothesis more accurate. It also proves the expectation in vehicle-induced aerodynamic loads on Highway Sound Barriers Part1: Field Experiment, that max/min pressure is proportional to the square of vehicle speed and inverse square of separation distance.

Mode analysis and low-order dynamic modelling of the three-dimensional turbulent flow filed around a building

  • Lei Zhou;Bingchao Zhang;K.T. Tseb
    • Wind and Structures
    • /
    • v.38 no.5
    • /
    • pp.381-398
    • /
    • 2024
  • This study presents a mode analysis of 3D turbulent velocity data around a square-section building model to identify the dynamic system for Kármán-type vortex shedding. Proper orthogonal decomposition (POD) was first performed to extract the significant 3D modes. Magnitude-squared coherence was then applied to detect the phase consistency between the modes, which were roughly divided into three groups. Group 1 (modes 1-4) depicted the main vortex shedding on the wake of the building, with mode 2 being controlled by the inflow fluctuation. Group 2 exhibited complex wake vortexes and single-sided vortex phenomena, while Group 3 exhibited more complicated phenomena, including flow separation. Subsequently, a third-order polynomial regression model was used to fit the dynamics system of modes 1, 3, and 4, which revealed average trend of the state trajectory. The two limit cycles of the regression model depicted the two rotation directions of Kármán-type vortex. Furthermore, two characteristic periods were identified from the trajectory generated by the regression model, which indicates fast and slow motions of the wake vortex. This study provides valuable insights into 3D mode morphology and dynamics of Kármán-type vortex shedding that helps to improve design and efficiency of structures in turbulent flow.

A PIV Study of Flow Patterns Over Stationary and Pitch-Oscillating Airfoils with Blowing Jet

  • Lee, Ki-Young;Chung, Hyoung-Seog;Cho, Dong-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.111-120
    • /
    • 2008
  • A particle image velocimetry (PIV) technique was employed to investigate the effects of blowing jet on the flow characteristics over stationary and pitch-oscillating airfoils. The Reynolds number was $7.84{\times}10^5$ based on the chord length. It was found that for stationary airfoil cases, continuous and pulsating blowing jets successfully reduced separated wake region at high angles of attack. A comparison study of two different types of jet blowing indicated that pulsating jet is more effective than continuous jet for flow separation control. Pulsating leading-edge blowing postpones flow separation and increased stall angle of attack by $2^{\circ}{\sim}3^{\circ}$. For pitch-oscillating airfoil cases, the PIV results showed that blowing jet efficiently delays the separation onset point during pitch-up stroke, whereas it does not prevent flow separation during pitch-down stroke, even at angles of attack smaller than static ones.

Numerical analysis of oscillating square cylinder with corner radius

  • Tong, J.F.;Sohn, C.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.316-320
    • /
    • 2008
  • In this paper, the near wake of stationary and transversely oscillating square section cylinders with different corner radii are studied by numerical method to investigate the influence of corner radius. Six models R/D=0,0.1,0.2,0.3,0.4,0.5 (R is the corner radius and D is the characteristic dimension of the body) were studied. It was found that the corner radius of square cylinder significantly influences the flow features around the body both in stationary and oscillating conditions. Results indicate that, as R/D ratio increases, the Strouhal number increases and the separation point decrease for the stationary and oscillating cases.

  • PDF

Numerical analysis of oscillating square cylinder with corner radius

  • Tong, J.F.;Sohn, C.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.316-320
    • /
    • 2008
  • In this paper, the near wake of stationary and transversely oscillating square section cylinders with different corner radii are studied by numerical method to investigate the influence of corner radius. Six models R/D=0,0.1,0.2,0.3,0.4,0.5 (R is the corner radius and D is the characteristic dimension of the body) were studied. It was found that the corner radius of square cylinder significantly influences the flow features around the body both in stationary and oscillating conditions. Results indicate that, as R/D ratio increases, the Strouhal number increases and the separation point decrease for the stationary and oscillating cases.

  • PDF

High order computation on the three dimensional wakes past a circular cylinder (고해상도수치기법에 의한 원형실린더 주위의 3차원 후류유동 특성연구)

  • Lee, Sang-Soo;Kim, Jae-Soo;Kim, Tae-Su
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.622-625
    • /
    • 2008
  • While the research for flow over a circular cylinder has been actively carried out up to the present, it has been known that the flow has not been clarified even now. Various complex flow and aero-acoustic characteristics exist around a circular cylinder such as flow separation, wake and pressure wave propagation. In this paper, research was carried out for wake flow and aeroacoustics over a circular cylinders by using high order, high resolution techniques that are used in two dimensional aero- acoustic analysis. OpenMP parallel processing method was used. For the numerical result, the periodic characteristic of Strouhal Number due to vortex shedding was comparatively analyzed with other experiment values and two dimensional numerical results.

  • PDF