• Title/Summary/Keyword: wake model

Search Result 491, Processing Time 0.028 seconds

Flow control on the near wake of a circular cylinder attached with control rods (제어봉 부착에 따른 원형실린더 근접 후류 유동제어에 관한 실험적 연구)

  • Gim, Ok-Sok;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.453-458
    • /
    • 2008
  • Flow characteristics of the control-rod-attached 2-dimensional circular cylinder was accomplished using by PIV techniques. model tests had been carried out with different diameters of control rods(d/D=0.1 through d/D=0.5). and the Reynolds number Re=15,000 based on the cylinder diameter(D=50mm) to predict the performance of the model and the two-frame grey-level cross-correlation method had been used to obtain the velocity distribution in the flow field. 50mm circular cylinder had been used during the whole experiments and measured results had been compared with each other. The measured results have been compared with each case. therefore this article identifies not only the mean velocity profiles but also the control effects of the control rods.

A Simple Calculational Method by using Modified Von Mises Transformation applied to the Coaxial Turbulent Jet Mixing (유동함수를 이용한 난류제트혼합유동 계산에 관한 연구)

  • Choi Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.97-104
    • /
    • 2005
  • A simple but efficient grid generation technique by using the modified compressible form of stream function has been formulated. Transformation of a physical plane to a streamline plane, the Von Mises Transformation, has been widely used to solve the differential equations governing flow phenomena, however, limitation arises in low velocity region of boundary layer, mixing layer and wake region where the relatively large grid spacing is inevitable. Modified Von Mises Transformation with simple mathematical adjustment for the stream function is suggested and applied to solve the confined coaxial turbulent jet mixing with simple $\kappa-\epsilon$ turbulence model. Comparison with several experimental data of axial mean velocity, turbulent kinetic energy, and Reynolds shear stress distribution shows quite good agreement in the mixing layer except in the centerline where the turbulent kinetic energy distributions were somewhat under estimated. This formulation is strongly suggested to be utilized specially for free turbulent mixing layers in axisymmetric flow conditions such as the investigation of mixing behavior, jet noise production and reduction for Turbofan engines.

Unguided Rocket Trajectory Analysis under Rotor Wake and External Wind (로터 후류와 외풍에 따른 무유도 로켓 궤적 변화 해석)

  • Kim, Hyeongseok;Chae, Sanghyun;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2018
  • Downwash from helicopter rotor blades and external winds from various maneuvering make an unguided rocket change its trajectory and range. For the prediction of the trajectory and range, it is essential to consider the downwash effect. In this study, an algorithm was developed to calculate 6-Degree-Of-Freedom(6 DOF) forces and moments exerting on the rocket, and total flight trajectory of a 2.75-inch unguided rocket in a helicopter downwash flow field. Using Actuator Disk Model(ADM) analysis result, the algorithm could analyze the entire trajectory in various initial launch condition such as launch angle, launch velocity, and external wind. The algorithm that considered the interference between a fuselage and external winds could predict the trajectory change more precisely than inflow model analysis. Using the developed algorithm, the attitude and trajectory change mechanism by the downwash effect were investigated analyzing the effective angle of attack change and characteristics of pitching stability of the unguided rocket. Also, the trajectory and range changes were analyzed by considering the downwash effect with external winds. As a result, it was concluded that the key factors of the rocket range change were downwash area and magnitude which effect on the rocket, and the secondary factors were the dynamic pressure of the rocket and the interference between a fuselage and external winds. In tailwind case which was much influential on the range characteristics than other wind cases, the range of the rocket rose as increasing the tailwind velocity. However, there was a limit that the range of the rocket did not increase more than the specific tailwind velocity.

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.

Brain Based Teaching-learning Model Design about Life Drawing - Focusing on Animation Major Drawing (라이프 드로잉(life Drawing)의 두뇌 기반 교수-학습 전략 연구 - 애니메이션 전공 중심으로)

  • Park, Sung-Won
    • Cartoon and Animation Studies
    • /
    • s.38
    • /
    • pp.71-91
    • /
    • 2015
  • This study is a process to study the life drawing teaching method considering professional characteristics in animation and has a study objective to design the model and teaching method which applies the strategies considering the creative mechanism of the brain. Recently, study results about integrated teaching method are being announced which apply brain based learning principles as the alternative arguments about teaching methods in each area based on creativeness. In other words, integrated education based on creative mechanism in the brain is applied not only to fine arts and drawing education, but also to the entire areas of the arts. Life drawing is an area which demands comprehensive teaching method that vivid expressions could be skillfully obtained by understanding the communication methods with the objects through cognitive senses, creativeness and movements beyond the structural knowledge about human body. Therefore in this study, the strategies and methods for the skillfulness of life drawing and consequently arranged education model structure drawing are to be designed based on the creativeness, study materials and content factors which were analyzed in previous stages of this study. In order to combine the content factors based on creativeness and study materials of the brain which are the results of previous studies, the conclusion has been reached that 5 step cognitive strategy stages to wake brain senses, flexibilize the brain, purify the brain, integrate the brain and become the master of the brain. Strategic methods to execute this were designed with brain gym, right brain energization drawing and HSP(high-level cognizance) training. Teaching and learning model structure diagram which is designed based on this is to be continued to teaching and learning guidelines during the relevant semesters after the research.

A Study on Upper Ocean Response to Typhoon Ewiniar (0603) and Its Impact (태풍 에위니아 (0603) 통과 후 상층해양 변동 특성과 영향)

  • Jeong, Yeong Yun;Moon, Il-Ju;Kim, Sung-Hun
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.205-220
    • /
    • 2013
  • Upper ocean response to typhoon Ewiniar (0603) and its impact on the following typhoon Bilis (0604) are investigated using observational data and numerical experiments. Data used in this study are obtained from the Ieodo Ocean Research Station (IORS), ARGO, and satellite. Numerical simulations are conducted using 3-dimensional Princeton Ocean Model. Results show that when Ewiniar passes over the western North Pacific, unique oceanic responses are found at two places, One is in East China Sea near Taiwan and another is in the vicinity of IORS. The latter are characterized by a strong sea surface cooling (SSC), $6^{\circ}C$ and $11^{\circ}C$ in simulation and observation, under the condition of typhoon with a fast translation speed (8m $s^{-1}$) and lowering intensity (970 hPa). The record-breaking strong SSC is caused by the Yellow Sea Bottom Cold Water, which produces a strong vertical temperature gradient within a shallow depth of Yellow Sea. The former are also characterized by a strong SSC, $7.5^{\circ}C$ in simulation, with a additional cooling of $4.5^{\circ}C$ after a storm's passage mainly due to enhanced and maintained upwelling process by the resonance coupling of storm translation speed and the gravest mode internal wave phase speed. The numerical simulation reveals that the Ewiniar produced a unfavorable upper-ocean thermal condition, which eventually inhibited the intensification of the following typhoon Bilis. Statistics show that 9% of the typhoons in western North Pacific are influenced by cold wakes produced by a proceeding typhoon. These overall results demonstrate that upper ocean response to a typhoon even after the passage is also important factor to be considered for an accurate intensity prediction of a following typhoon with similar track.

Effects of Comorbid Sleep Disorders on Cardiovascular Complications of Hypertension Among Patients With Newly-diagnosed Hypertension: An Analysis of the Korean National Health Insurance Service-National Sample Cohort

  • Kang, Jeongmook;Park, Yoon-Hyung;Yang, Kwang Ik;Cruz, Jose Rene Bagani;Hwangbo, Young
    • Journal of Preventive Medicine and Public Health
    • /
    • v.53 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • Objectives: This study investigated the effects of comorbid sleep disorders (SD) on the incidence of cardiovascular complications among newly-diagnosed hypertension (HTN) patients. Methods: As study population, 124 057 newly-diagnosed essential HTN patients aged 30 or older, without cardiovascular complications at diagnosis with HTN, were selected from the National Health Insurance Service-National Sample Cohort. The incidence of cardiovascular complications was calculated, Cox proportional-hazards regression model was used to analyze the risk of complications, and the population attributable fraction (PAF) for cardiovascular complications of having comorbid SD at HTN diagnosis was calculated. Results: Over 10 years, 32 275 patients (26.0%) developed cardiovascular complications. In HTN patients with comorbid SD at diagnosis of HTN, the incidence of cardiovascular complications (78.3/1000 person-years; 95% confidence interval [CI], 75.8 to 80.9) was higher than in those without comorbid SD (58.6/1000 person-years; 95% CI, 57.9 to 59.3) and the risk of cardiovascular complications was 1.21 times higher (95% CI, 1.17 to 1.25), adjusting for age, gender, income, area of residence, and comorbid diabetes mellitus. The PAF of having comorbid SD at diagnosis of HTN for the incidence of cardiovascular complications was 2.07% (95% CI, 1.69 to 2.44). Conclusions: Newly-diagnosed essential HTN patients aged 30 or older who had comorbid SD at the time of their HTN diagnosis had a higher incidence of cardiovascular complications than those without comorbid SD. Age, gender, income, area of residence, and comorbid diabetes mellitus had a significant effect on the incidence of cardiovascular complications. Approximately 2% of cardiovascular complications were found to occur due to the presence of SD.

Korea's Rural Development Characteristics and the Implications to Vietnam (한국의 농촌개발 경험이 베트남에 주는 시사점)

  • Im, Sang Bong
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.3
    • /
    • pp.71-80
    • /
    • 2016
  • Korea is becoming a model country for the developing countries' agricultural and rural development. Drawing implications for Vietnam from Korea's experiences can help make development strategies and policies for other developing countries including North Korea as well as for Vietnam itself. Vietnam is facing an inefficiency in agricultural production and the gap between urban and rural growth has been widening. Farm sizes per household are small and farmlands are scattered. Diversification in rural industry is very restricted. To attack these problems, investment is urgently needed for rural infrastructure building as well as agricultural structure adjustment. In the process of rural development, there have been also encountered such problems as financial procurement, community's spontaneous participation, manpower development for adjusting to industrial structural change. Korea's experiences may be helpful for establishing rural development strategies and policies in Vietnam. Benchmark scopes can go beyond Saemaul Undong in 1970s. Korea's pre- and post-Saemaul Undong era as well as the Saemaul Undong era can be referred. In the wake of globalization, Vietnam has not only experienced compressed rapid economic growth but also encountered policy tasks to eradicate poverty, to realize self-reliance and income increase, and to lessen urban-rural development gap, at the same time. Korea's experiences show that priority needs to be put on the establishment of national and rural development strategies based on Vietnam-specific conditions, utilization of village's resources including community tradition and social capital, fund raising for rural development, farmland development and mobilization, production and living infrastructure building, technology transfer for farmers and vocational training for new job seekers.

Automatic Processing Techniques of Rotorcraft Flight Data Using Data Mining (회전익항공기 운동모델 개발을 위한 데이터마이닝을 이용한 비행데이터 자동 처리 기법)

  • Oh, Hyeju;Jo, Sungbeom;Choi, Keeyoung;Roh, Eun-Jung;Kang, Byung-Ryong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.823-832
    • /
    • 2018
  • In general, the fidelity of the aircraft dynamic model is verified by comparison with the flight test results of the target aircraft. Therefore, the reference flight data for performance comparisons must be extracted. This process requires a lot of time and manpower to extract useful data from the vast quantity of flight test data containing various noise for comparing fidelity. In particular, processing of flight data is complex because rotorcraft have high non-linearity characteristics such as coupling and wake interference effect and perform various maneuvers such as hover and backward flight. This study defines flight data processing criteria for rotorcraft and provides procedures and methods for automated processing of static and dynamic flight data using data mining techniques. Finally, the methods presented are validated using flight data.

Large Eddy Simulation of the flow around a finite-length square cylinder with free-end slot suction

  • Wang, Hanfeng;Zeng, Lingwei;Alam, Md. Mahbub;Guo, Wei
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.533-546
    • /
    • 2020
  • Large Eddy Simulation (LES) is used to study the effects of steady slot suction on the aerodynamic forces of and flow around a wall-mounted finite-length square cylinder. The aspect ratio H/d of the tested cylinder is 5, where H and d are the cylinder height and width, respectively. The Reynolds number based on free-stream oncoming flow velocity U and d is 2.78×104. The suction slot locates near the leading edge of the free end, with a width of 0.025d and a length of 0.9d. The suction coefficient Q (= Us/U) is varied as Q = 0, 1 and 3, where Us is the velocity at the entrance of the suction slot. It is found that the free-end steady slot suction can effectively suppress the aerodynamic forces of the model. The maximum reduction of aerodynamic forces occurs at Q = 1, with the time-mean drag, fluctuating drag, and fluctuating lift reduced by 3.75%, 19.08%, 40.91%, respectively. For Q = 3, all aerodynamic forces are still smaller than those for Q = 0 (uncontrolled case), but obviously higher than those for Q = 1. The involved control mechanism is successfully revealed, based on the comparison of the flow around cylinder free end and the near wake for the three tested Q values.