• Title/Summary/Keyword: wake

Search Result 1,734, Processing Time 0.023 seconds

PIV Analysis of Free Surface Effects on Flow Around a Rotating Propeller with Varying Water Depth (자유표면과 수심깊이가 회전하는 프로펠러 주위 유동에 미치는 영향에 대한 PIV 해석)

  • Paik, Bu-Geun;Lee, Jung-Yeop;Lee, Sang-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.427-434
    • /
    • 2005
  • The free surface influenced the wake behind a rotating propeller and its effects were investigated experimentally in a circulating water channel with the variation of water depth. Instantaneous velocity fields were measured using two-frame PIV technique and ensemble-averaged to study the phase-averaged flow structure in the wake region. For an isolated propeller, the flow behind the propeller is affected only by the propeller rotation speed, the leading on the blades and the proximity of the propeller to the free surface. The phase-averaged mean velocity fields show that the potential wake and the viscous wake developed on the blade surfaces. The interaction between the tip vortices and the slipstream causes the oscillating trajectory of tip vortices. The presence of the free surface greatly affected the wake structure, especially for propeller immersion depth of 0.6D. At small immersion depths, the free surface modified the tip and trailing vortices and the slipstream flow structure downstream of X/D = 0.3 in the propeller wake.

Design and Implementation of EMS for Real-Time Power Generation Control of Wind Farm Based on Wake Effect Optimization (후류 영향 최적화 기반 실시간 풍력발전단지 발전 제어용 EMS의 설계 및 구현)

  • Kim, Joon-Hyoung;Sung, Ki-Won;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1097-1108
    • /
    • 2022
  • This paper aimed to design and implement an EMS for real-time power generation control based on wake effect optimization of wind farm, and then to test it in commercial operating wind farm. For real-time control, we proposed the wake band-based optimization and setting the wake effect distance limit, and when the wake effect distance limit was set to 7D in the actual wind farm layout, the calculation time was improved by about 93.94%. In addition, we designed and implemented the script-based EMS for flexible operation logic management in preparation for unexpected issues during testing, and it was installed and tested on a wind farm in commercial operation. However, three issues arose during the testing process. These are the communication interface problem of meteorological tower, the problem of an abnormal wake effect, and the problem of wind turbine yaw control. These issues were solved by modifying the operation logic using EMS's script editor, and the test was successfully completed in the wind farm in commercial operation.

Holdup Characteristics of Three Functional Regions in a Slurry Bubble Column (삼상 슬러리 기포탑의 세 기능영역 체류량 특성)

  • Jang, Ji Hwa;Lim, Dae Ho;Kang, Yong;Jun, Ki Won
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.359-364
    • /
    • 2010
  • Three kinds of functional regions such as continuous slurry(${\varepsilon}_f$), bubble(${\varepsilon}_b$) and wake(${\varepsilon}_w$) regions were identified, and the individual phase holdups of each functional region were determined in a three-phase slurry bubble column of 0.152 m ID. The holdups of bubble and wake were measured by adopting the electrical resistivity probe method. Effects of gas velocity and solid concentration in the slurry phase on the individual holdups of functional regions in the column were discussed. The holdup of continuous slurry phase decreased but that of bubble or wake increased, with an increase in the gas velocity in the column. The increase of solid content in the slurry phase could lead to the increase in the holdup of continuous slurry phase but decrease in the bubble or wake holdup. The portion of wake holdup was in the range of 15~40% of the bubble holdup, which decreased with increasing gas velocity or solid content in the slurry phase. The individual holdups of three functional regions were well correlated with operating variables within this experimental conditions.

Wake Field Effect from the Undulator Vacuum Chamber in PAL-XFEL

  • Park, Yong-Un
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.151.1-151.1
    • /
    • 2014
  • Wake field effect on the electron beam from the undulator chamber in PAL-XFEL is analyzed. The wake field takeover some energy from the electron beam which will increase the energy spread of the electron beam. This will cause the degradation of the radiation power in PAL-XFEL. To decrease the effect, the surface of the undulator vacuum chamber should be fabricated with 200 nm surface roughness and 5 nm oxidation layer. In this presentation, the numerical calculation of the wake will be shown. Simulation results of the radiation generation in PAL-XFEL also will be presented.

  • PDF

ADS-B based Wake Vortex Separation (ADS-B 기반 항공기 후류분리)

  • Kim, Jeong-Sik;Im, Dong-Heon
    • 한국항공운항학회:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.63-67
    • /
    • 2015
  • 항공기는 공중에서 양력을 발생시키는 과정에서 wake vortex를 생성하며, 항공기 중량과 항공기 주위의 기상(특히 바람 vector)에 따라 wake vortex의 크기와 그 소산속도가 결정된다. 이러한 Raw data 정보는 항공기에 장착된 FMS와 Sensor를 통해 수집될 수 있으며, 이를 ADS-B를 이용하여 지상관제기관과 주변항공기에 전파하면, 실시간으로 매우 정확한 후류크기와 영향범위를 확인할 수 있고, 이로써 보다 안전하고 효율적인 항공기 후류분리가 가능할 것으로 볼 수 있다. 본 자료는, 이러한 맥락에서 ICAO(ASBU)의 후류분리기준 축소를 통한 활주로사용증진 동향과, RTCA DO-260B의 부록(V) "Potential wake vortex and Arrival management ADS-B Application" 요지를 소개한다.

  • PDF

Circadian Rhythms of Melatonin, Thyroid-Stimulating Hormone and Body Temperature: Relationships among those Rhythms and Effect of Sleep-Wake Cycle

  • Kim, Mi-Seung;Lee, Hyun J.;Im, Wook-Bin
    • Animal cells and systems
    • /
    • v.6 no.3
    • /
    • pp.239-245
    • /
    • 2002
  • Plasma melatonin, thyroid-stimulating hormone (TSH) and body temperature were measured simultaneously and continuously before and after the sleep-wake cycle was shifted in 4 healthy males and changes in the circadian rhythm itself and in the phase relationship among these circadian rhythms were determined. Normal sleep-wake cycle (sleep hours: 2300-0700) was delayed by 10 h (sleep hours: 0900-1700) during the experiment. Even after this shift the typical melatonin rhythm was maintained: low during daytime and high during night. The melatonin rhythm was gradually delayed day by day. The TSH rhythm was also maintained fundamentally during 3 consecutive days of altered sleep-wake cycle. The phase was also delayed gradually but remarkably. The daily rhythm of body temperature was changed by the alteration of sleep-wake cycle. The body temperature began to decrease at the similar clock time as in the control but the decline during night awake period was less steep and the lowered body temperature persisted during sleep. The hormonal profiles during the days of shifted sleep/wake cycle suggest that plasma melatonin and TSH rhythms are basically regulated by an endogenous biological clock. The parallel phase shift of melatonin and TSH upon the change in sleep-wake cycle suggests that a common unitary pacemaker probably regulates these two rhythms. The reversal phase relationship between body temperature and melatonin suggests that melatonin may have a hypothermic effect on body temperature. The altered body temperature rhythm suggests that the awake status during night may inhibit the circadian decrease in body temperature and that sleep sustains the lowered body temperature. It is probable but uncertain that there ave causal relationships among sleep, melatonin, TSH, and body temperature.

A Study on Prediction of Wake Distribution by Neuro-Fuzzy System (뉴로퍼지시스템에 의한 반류분포 추정에 관한 연구)

  • Shin, Sung-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.154-159
    • /
    • 2007
  • Wake distribution data of stem flow fields have been accumulated systematically by model tests. If the correlation between geometrical hull information and wake distribution is grasped through the accumulated data, this correlation can be helpful to designing similar ships. In this paper, Neuro-Fuzzy system that is emerging as a new knowledge over a wide range of fields nowadays is tried to estimate the wake distribution on the propeller plan. Neuro-Fuzzy system is well known as one of prospective and representative analysis method for prediction, classification, diagnosis of real complicated world problem, and it is widely applied even in the engineering fields. For this study three-dimensional stern hull forms and nominal wake values from a model test ate structured as processing elements of input and output layer, respectively. The proposed method is proved as an useful technique in ship design by comparing measured wake distribution with predicted wake distribution.

Aerodynamic Performance Prediction of Horizontal Axis Wind Turbine by Vortex Lattice Method (와류 격자법에 의한 수평축 풍력터빈의 공기역학적 성능예측)

  • 유능수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1264-1271
    • /
    • 1990
  • The vortex lattice method was adopted to predict the aerodynamic performance of a horizontal axis wind turbine. For this simulation. the rotor blade was divided into many panels both in chordwise and spanwise direction and then replaced by horseshoe vortices. The wake was divided into two parts of near wake and far wake : the near wake was assumed as helical vortex line elements and the far wake was modeled by semi-infinite circular vortex cylinder. The induced velocity components were calculated by the Biot-Savart law. By this way the power coefficient was obtained and represented as a function of the tip speed ratio. The numerical results obtained were compared with those of the other methods and experimental results and showed good agreement with experimental results.

Computation of Wake Vortex Behavior Behind Airplanes in Close Formation Flight Using a Fourier-Spectral Method (푸리에-스펙트럴 법을 사용한 근접 편대비행 항공기의 와 거동 계산)

  • Ji, Seunghwan;Han, Cheolheui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Behaviors of wake vortices generated by an aircraft affect the performance and flight stability of flying aircraft in formation flight. In the present study, the trajectories of the wake vortices behind airplanes in close formation flight were computed using a Fourier spectral method. The behavior of wake vortices showed complex patterns depending on the initial circulation and the relative positions between the vortices. In the initial stage, the wake vortex movement was affected by the nascent vortex. When the vortex becomes closer to the other vortex, then a new trajectory is formed. When the viscous effect becomes dominant, the core radius increases. Thus, a new vortex moving near the existing vortex can have strong interaction with each other, resulting in the complicated behavior of wake vortices. In the future, the ground effect on the behavior of the wake vortices during take-off and landing will be studied.