• 제목/요약/키워드: vulnerability assessment of buildings

Search Result 66, Processing Time 0.022 seconds

Case study on seismic retrofit and cost assessment for a school building

  • Miano, Andrea;Chiumiento, Giovanni
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.53-64
    • /
    • 2020
  • In different high seismic regions around the world, many non-ductile existing reinforced concrete frame buildings, built without adequate seismic detailing requirements, have been damaged or collapsed after past earthquakes. The assessment and the retrofit of these non-ductile concrete structures is crucial theme of research for all the scientific community of engineers. In particular, a careful assessment of the existing building is fundamental for understanding the failure mechanisms that govern the collapse of the structure or the achievement of the recommended limit states. Based on the seismic assessment, the best retrofit strategy can be designed and applied to the structure. A school building located in Avellino province (Italy) is the case study. The analysis of seismic vulnerability carried out on the mentioned building has highlighted deficiencies in both static and seismic load conditions. The retrofit of the building has been designed based on different retrofit options in order to show the real retrofit design developed from the engineers to achieve the seismic safety of the building. The retrofit costs associated to structural operations are calculated for each case and have been summed up to the costs of the in situ tests. The paper shows a real retrofit design case study in which the best solution is chosen based on the results in terms of structural performance and cost among the different retrofit options.

Non-linear modeling of masonry churches through a discrete macro-element approach

  • Panto, Bartolomeo;Giresini, Linda;Sassu, Mauro;Calio, Ivo
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.223-236
    • /
    • 2017
  • Seismic assessment and rehabilitation of Monumental Buildings constitute an important issue in many regions around the world to preserve cultural heritage. On the contrary, many recent earthquakes have demonstrated the high vulnerability of this type of structures. The high nonlinear masonry behaviour requires ad hoc refined finite element numerical models, whose complexity and computational costs are generally unsuitable for practical applications. For these reasons, several authors proposed simplified numerical strategies to be used in engineering practice. However, most of these alternative methods are oversimplified being based on the assumption of in-plane behaviour of masonry walls. Moreover, they cannot be used for modelling the monumental structures for which the interaction between plane and out-plane behaviour governs the structural response. Recently, an innovative discrete-modelling approach for the simulation of both in-plane and out of-plane response of masonry structures was proposed and applied to study several typologies of historic structures. In this paper the latter model is applied with reference to a real case study, and numerically compared with an advanced finite element modelling. The method is applied to the St.Venerio church in Reggiolo (Italy), damaged during the 2012 Emilia-Romagna earthquake and numerically investigated in the literature.

Seismic Reliability Assessment of Mid- and High-rise Post-tensioned CLT Shear Wall Structures

  • Sun, Xiaofeng;Li, Zheng;He, Minjuan
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.175-185
    • /
    • 2020
  • Currently, few studies have been conducted to comprehend the seismic reliability of post-tensioned (PT) CLT shear wall structures, due to the complexity of this kind of structural system as well as due to lack of a reliable structural model. In this paper, a set of 4-, 8-, 12-, and 16-storey benchmark PT CLT shear wall structures (PT-CLTstrs) were designed using the direct displacement-based design method, and their calibrated structural models were developed. The seismic reliability of each PT-CLTstr was assessed based on the fragility analysis and based on the response surface method (RSM), respectively. The fragility-based reliability index and the RSM-based reliability index were then compared, for each PT-CLTstr and for each seismic hazard level. Results show that the RSM-based reliabilities are slightly less than the fragility-based reliabilities. Overall, both the RSM and the fragility-based reliability method can be used as efficient approaches for assessing the seismic reliabilities of the PT-CLTstrs. For these studied mid- and high-rise benchmark PT-CLTstrs, following their fragility-based reliabilities, the 8-storey PT-CLTstr is subjected to the least seismic vulnerability; while, following their RSM-based reliabilities, the 4-storey PT-CLTstr is subjected to the least seismic vulnerability

Analysis of Building Vulnerabilities to Typhoon Disaster Based on Damage Loss Data (태풍 재해에 대한 건물 취약성의 피해손실 데이터 기반 분석)

  • Ahn, Sung-Jin;Kim, Tae-Hui;Son, Ki-Young;Kim, Ji-Myong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.529-538
    • /
    • 2019
  • Typhoons can cause significant financial damage worldwide. For this reason, states, local governments and insurance companies attempt to quantify and mitigate the financial risks related to these natural disasters by developing a typhoon risk assessment model. As such, the importance of typhoon risk assessment models is increasing, and it is also important to reflect local vulnerabilities to enable sophisticated assessments. Although a practical study of economic losses associated with natural disasters has identified essential risk indicators, comprehensive studies covering the correlation between vulnerability and economic loss are still needed. The purpose of this study is to identify typhoon damage indicators and to develop evaluation indicators for typhoon damage prediction functions, utilizing the loses from Typhoon Maemi as data. This study analyzes actual loss records of Typhoon Maemi provided by local insurance companies to prepare for a scenario of maximum losses. To create a vulnerability function, the authors used the wind speed and distance from the coast and the total value of property, construction type, floors, and underground floor indicators. The results and metrics of this study provide practical guidelines for government agencies and insurance companies in developing vulnerability functions that reflect the actual financial losses and regional vulnerabilities of buildings.

Nonlinear seismic analysis of a super 13-element reinforced concrete beam-column joint model

  • Adom-Asamoah, Mark;Banahene, Jack Osei
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.905-924
    • /
    • 2016
  • Several two-dimensional analytical beam column joint models with varying complexities have been proposed in quantifying joint flexibility during seismic vulnerability assessment of non-ductile reinforced concrete (RC) frames. Notable models are the single component rotational spring element and the super element joint model that can effectively capture the governing inelastic mechanisms under severe ground motions. Even though both models have been extensively calibrated and verified using quasi-static test of joint sub-assemblages, a comparative study of the inelastic seismic responses under nonlinear time history analysis (NTHA) of RC frames has not been thoroughly evaluated. This study employs three hypothetical case study RC frames subjected to increasing ground motion intensities to study their inherent variations. Results indicate that the super element joint model overestimates the transient drift ratio at the first story and becomes highly un-conservative by under-predicting the drift ratios at the roof level when compared to the single-component model and the conventional rigid joint assumption. In addition, between these story levels, a decline in the drift ratios is observed as the story level increased. However, from this limited study, there is no consistent evidence to suggest that care should be taken in selecting either a single or multi component joint model for seismic risk assessment of buildings when a global demand measure such as maximum inter-storey drift is employed in the seismic assessment framework.

Vulnerability Assessment to Urban Thermal Environment for Spatial Planning - A Case Study of Seoul, Korea - (공간계획 활용을 위한 도시 열환경 취약성 평가 연구 - 서울시를 사례로 -)

  • Eum, Jeong-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.4
    • /
    • pp.109-120
    • /
    • 2016
  • This study aims to assess vulnerability in urban thermal environments of Seoul by using indicators frequently used in previous studies as well as effective indicators for spatial planning like urban and environmental planning. For this purpose, fifteen indicators that influence urban thermal environments such as heat waves, urban heat island effects, and urban micro-climates were identified based on literature reviews. Indicators for presenting urban structure and spatial properties were included; for example, building volume as 'exposure to climate', buildings completed before 1980 as 'sensitivity', and green space areas as 'adaptive capacity'. Among them, twelve indicators were applied to assess vulnerability in urban thermal environments of Seoul by using a GIS spatial analysis combined with fuzzy logic. The results show that the Gangnam area is identified as more vulnerable to a heat environment as compared to the Gangbuk area. In the Gangnam area, Seocho-gu, Gangnam-gu, Dongjak-gu, Yeongdeungpo-gu, Gangseo-gu were relatively high in vulnerability, while Dongdaemun-gu, Gangbuk-gu, Gwangjin-gu, Jungrang-gu were relatively high in the Gangbuk area. Gwanak-gu, Dobong-gu, Eunpyeong-gu, and Nowon-gu, which include forested areas, have low vulnerability in the sectors of 'exposure to climate' and 'sensitivity' due to the impact of Gwanaksan and Bukhansan. However, some areas with high vulnerability like Seocho-gu and Gangnam-gu may have lower vulnerability if the indicator 'status of air conditioning' from the sector of 'adaptive capacity' is used. This study could support the establishment of a practicable thermal environment policy and spatial planning to reduce heat-related risks in the field of urban and environmental planning.

A Study on the Seismic Damage Scenario in the Model District of Seoul City (서울시 모델 구역에서의 지진피해시나리오 연구)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.223-230
    • /
    • 1999
  • The seismic damage assessment to the postulated earthquake is attempted for the buildings in the model district of Seoul City. The capacity spectrum method is employed in which the vulnerability functions are expressed as functions of the spectral displacement. the database of the building stock is constructed and managed using Geographic Information System software. The model district is selected to represent the typical structural and residential characteristics of Seoul City The structural properties were collected from the design documents. The field inspections were carried out to find out the current status of the building. They are classified into 11 structural types. The fragility curves in HazUS are employed, The ground motions from the postulated earthquakes are simulated using the Boor's methods, The surface soil in the district is classified into 3 profiles using the depth as the parameter. The one-dimensional wave propagation method is used to calculate he filtered ground motion through surface soil layer. The average spectrum of this sample time histories is used as the demand curves. The calculated results are expressed in maps using GIS software ArcView 3.0a

  • PDF

Remote monitoring of urban and infrastructural areas

  • Bortoluzzi, Daniele;Casciati, Fabio;Elia, Lorenzo;Faravelli, Lucia
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.449-462
    • /
    • 2014
  • Seismically induced structural damage, as well as any damage caused by a natural catastrophic event, covers a wide area. This suggests to supervise the event consequences by vision tools. This paper reports the evolution from the results obtained by the project RADATT (RApid Damage Assessment Telematics Tool) funded by the European Commission within FP4. The aim was to supply a rapid and reliable damage detector/estimator for an area where a catastrophic event had occurred. Here, a general open-source methodology for the detection and the estimation of the damage caused by natural catastrophes is developed. The suitable available hazard and vulnerability data and satellite pictures covering the area of interest represent the required bits of information for updated telematics tools able to manage it. As a result the global damage is detected by the simple use of open source software. A case-study to a highly dense agglomerate of buildings is discussed in order to provide the main details of the proposed methodology.

Review on Prior Evaluation for Terrorism Risk of High-rise Buildings (초고층건축물의 테러 위험도 사전평가에 관한 연구)

  • Seong, Bin;Lee, Yoon-Ho
    • Korean Security Journal
    • /
    • no.36
    • /
    • pp.293-316
    • /
    • 2013
  • Today's high-rise buildings are increasing concern about the safety and evacuation of people related to the fire and threat from outside. Terrorism breaking out in high-rise buildings, a symbol of the national economy results in a number of casualties, economic loss, social fear and damage to national status. That's why high-rise building has also emerged as a target of major terrorist attacks, compared to other types of buildings. We have 54 high-rise buildings in 15 regions over the country. The Ministry of Land, Infrastructure and Transport and Seoul Metropolitan Government have offered the guidelines to prevent terrorist attacks toward high-rise buildings. Since the 9/11 terrorist attacks, the U.S. Federal Emergency Management Agency (FEMA) has developed and taken advantage of the Risk Management Manual Series. According to this manual, pre-assessment is conducted for the prevention of terrorism and particularly in FEMA 455, risk of the surrounding areas, vulnerability, possibility from terrorist attacks are checked. After the check, experts classify the risk of terrorist attacks toward the high-rise buildings and according to the risk classification, architects, security experts and structure engineers can carry out terrorism prevention program for high-rise buildings. The U.K. NaCTSO has also offered the terrorism prevention guidelines. Therefore, the Ministry of Land, Infrastructure and Transport and Seoul Metropolitan Government should make more concrete guidelines for high-rise buildings such as what U.S. FEMA and U.K. NaCTSO implement, including prior evaluation technique for terrorism risk.

  • PDF

Seismic assessment of transfer plate high rise buildings

  • Su, R.K.L.;Chandler, A.M.;Li, J.H.;Lam, N.T.K.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.287-306
    • /
    • 2002
  • The assessment of structural performance of transfer structures under potential seismic actions is presented. Various seismic assessment methodologies are used, with particular emphasis on the accurate modelling of the higher mode effects and the potential development of a soft storey effect in the mega-columns below the transfer plate (TP) level. Those methods include response spectrum analysis (RSA), manual calculation, pushover analysis (POA) and equivalent static load analysis (ESA). The capabilities and limitations of each method are highlighted. The paper aims, firstly, to determine the appropriate seismic assessment methodology for transfer structures using these different approaches, all of which can be undertaken with the resources generally available in a design office. Secondly, the paper highlights and discusses factors influencing the response behaviour of transfer structures, and finally provides a general indication of their seismic vulnerability. The representative Hong Kong building considered in this paper utilises a structural system with coupled shear walls and moment resisting portal-frames, above and below the TP, respectively. By adopting the wind load profile stipulated in the Code of Practice on Wind Effects: Hong Kong-1983, all the structural members are sized and detailed according to the British Standards BS8110 and the current local practices. The seismic displacement demand for the structure, when built on either rock or deep soil sites, was determined in a companion paper. The lateral load-displacement characteristic of the building, determined herein from manual calculation, has indicated that the poor ductility (brittle nature) of the mega-columns, due mainly to the high level of axial pre-compression as found from the analysis, cannot be effectively alleviated solely by increasing the quantity of confinement stirrups. The interstorey drift demands at lower and upper zones caused by seismic actions are found to be substantially higher than those arising from wind loads. The mega-columns supporting the TP and the coupling beams at higher zones are identified to be the most vulnerable components under seismic actions.