• 제목/요약/키워드: vortex shedding model

검색결과 125건 처리시간 0.021초

풍하중을 받는 테이퍼 고층건물의 진동변위응답 평가 (The Evaluation in Displacement Response of Tapered Tall Buildings to Wind Load)

  • 조지은;유기표;김종수;김영문
    • 한국공간구조학회논문집
    • /
    • 제5권4호
    • /
    • pp.101-108
    • /
    • 2005
  • 고층건물의 진동응답을 저감시키기 위한 다양한 방법들이 연구되고 있다. 이들 진동응답의 저감 연구는 건물의 외관을 병화 시키는 방법과 건물에 부가감쇠장치를 설치하는 방법들이 있는데 본 논문에서는 고층 건물의 형태의 변화에 다른 진동변위응답의 특성을 파악하고자 한다. 고층건물의 형태변화 중에서도 외관에 테이퍼를 수는 방법을 사용하였다. 기류의 특성은 도심 및 교외지역을 중심으로 풍동실험을 실시하였다.

  • PDF

Wind loading on trees integrated with a building envelope

  • Aly, Aly Mousaad;Fossati, Fabio;Muggiasca, Sara;Argentini, Tommaso;Bitsuamlak, Girma;Franchi, Alberto;Longarini, Nicola;Crespi, Pietro;Chowdhury, Arindam Gan
    • Wind and Structures
    • /
    • 제17권1호
    • /
    • pp.69-85
    • /
    • 2013
  • With the sustainability movement, vegetated building envelopes are gaining more popularity. This requires special wind effect investigations, both from sustainability and resiliency perspectives. The current paper focuses on wind load estimation on small- and full-scale trees used as part of green roofs and balconies. Small-scale wind load assessment was carried out using a wind tunnel testing in a global-effect study to understand the interference effects from surrounding structures. Full-scale trees were investigated at a large open-jet facility in a local-effect study to account for the wind-tree interaction. The effect of Reynolds number combined with shape change on the overall loads measured at the base of the trees (near the roots) has been investigated by testing at different model-scales and wind speeds. In addition, high-speed tests were conducted to examine the security of the trees in soil and to assess the effectiveness of a proposed structural mitigation system. Results of the current research show that at relatively high wind speeds the load coefficients tend to be reduced, limiting the wind loads on trees. No resonance or vortex shedding was visually observed.

Numerical modelling for evaluating the TMD performance in an industrial chimney

  • Iban, A.L.;Brownjohn, J.M.W.;Belver, A.V.;Lopez-Reyes, P.M.;Koo, K.
    • Wind and Structures
    • /
    • 제17권3호
    • /
    • pp.263-274
    • /
    • 2013
  • A numerical technique for fluid-structure interaction, which is based on the finite element method (FEM) and computational fluid dynamics (CFD), was developed for application to an industrial chimney equipped with a pendulum tuned mass damper (TMD). In order to solve the structural problem, a one-dimensional beam model (Navier-Bernoulli) was considered and, for the dynamical problem, the standard second-order Newmark method was used. Navier-Stokes equations for incompressible flow are solved in several horizontal planes to determine the pressure in the boundary of the corresponding cross-section of the chimney. Forces per unit length were obtained by integrating the pressure and are introduced in the structure using standard FEM interpolation techniques. For the fluid problem, a fractional step scheme based on a second order pressure splitting has been used. In each fluid plane, the displacements have been taken into account considering an Arbitrary Lagrangian Eulerian approach. The stabilization of convection and diffusion terms is achieved by means of quasi-static orthogonal subscales. For each period of time, the fluid problem was solved and the geometry of the mesh of each fluid plane is updated according to the structure displacements. Using this technique, along-wind and across-wind effects have been properly explained. The method was applied to an industrial chimney in three scenarios (with or without TMD and for different damping values) and for two wind speeds, showing different responses.

Experimental characterization of the lateral and near-wake flow for the BARC configuration

  • Pasqualetto, Elena;Lunghi, Gianmarco;Rocchio, Benedetto;Mariotti, Alessandro;Salvetti, Maria Vittoria
    • Wind and Structures
    • /
    • 제34권1호
    • /
    • pp.101-113
    • /
    • 2022
  • We experimentally investigate the high-Reynolds flow around a rectangular cylinder of aspect ratio 5:1. This configuration is the object of the international BARC benchmark. Wind tunnel tests have been carried out for the flow at zero angle of attack and a Reynolds number, based on the crossflow cylinder length and on the freestream velocity, equal, to 40 000. Velocity measurements are obtained by using hot-wire anemometry along 50 different cross-flow traverses on the cylinder side and in the near wake. Differential pressure measurements are acquired on multiple streamwise sections of the model. The obtained measurements are in a good agreement with the state-of-the-art experiments. For the first time among the several contributions to the BARC benchmark, detailed flow measurements are acquired in the region near the cylinder side and in the near-wake flow. The edges and the thickness of the shear layers detaching from the upstream edges are derived from velocity measurements. Furthermore, we compute the flow frequencies characterizing the roll-up of the shear layers, the evolution of vortical structures near the cylinder side and the vortex shedding in the wake.

Investigation of the effects due to a permeable double skin façade on the overall aerodynamics of a high-rise building

  • Pomaranzi, Giulia;Pasqualotto, Giada;Zassso, Alberto
    • Wind and Structures
    • /
    • 제35권3호
    • /
    • pp.213-227
    • /
    • 2022
  • The design of a building is a complex process that encompasses different fields: one of the most relevant is nowadays the energetic one, which has led to the introduction of new typologies of building envelopes. Among them, the Permeable Double Skin Façades (PDSF) are capable to reduce the solar impact and so to improve the energetic performances of the building. However, the aerodynamic characterization of a building with a PDSF is still little investigated in the current literature. The present paper proposes an experimental study to highlight the modifications induced by the outer porous façade in the aerodynamics of a building. A dedicated wind tunnel study is conducted on a rigid model of a prismatic high-rise building, where different façade configurations are tested. Specifically, the single-layer façade is compared to two PDSFs, the former realized with perforated metal and the latter with expanded metal. Outcomes of the tests allow estimating the cladding loads for all the configurations, quantifying the shielding effects ascribable to the porous layers that are translated in a significant reduction of the design pressure that could be up to 50%. Moreover, the impact of the PDSFs on the vortex shedding is investigated, suggesting the capability of the façade to suppress the generation of synchronised vortices and so mitigate the structural response of the building.

Wind tunnel study of wake-induced aerodynamics of parallel stay-cables and power conductor cables in a yawed flow

  • Jafari, Mohammad;Sarkar, Partha P.
    • Wind and Structures
    • /
    • 제30권6호
    • /
    • pp.617-631
    • /
    • 2020
  • Wake-induced aerodynamics of yawed circular cylinders with smooth and grooved surfaces in a tandem arrangement was studied. This pair of cylinders represent sections of stay-cables with smooth surfaces and high-voltage power conductors with grooved surfaces that are vulnerable to flow-induced structural failure. The study provides some insight for a better understanding of wake-induced loads and galloping problem of bundled cables. All experiments in this study were conducted using a pair of stationary section models of circular cylinders in a wind tunnel subjected to uniform and smooth flow. The aerodynamic force coefficients and vortex-shedding frequency of the downstream model were extracted from the surface pressure distribution. For measurement, polished aluminum tubes were used as smooth cables; and hollow tubes with a helically grooved surface were used as power conductors. The aerodynamic properties of the downstream model were captured at wind speeds of about 6-23 m/s (Reynolds number of 5×104 to 2.67×105 for smooth cable and 2×104 to 1.01×105 for grooved cable) and yaw angles ranging from 0° to 45° while the upstream model was fixed at the various spacing between the two model cylinders. The results showed that the Strouhal number of yawed cable is less than the non-yawed case at a given Reynolds number, and its value is smaller than the Strouhal number of a single cable. Additionally, compared to the single smooth cable, it was observed that there was a reduction of drag coefficient of the downstream model, but no change in a drag coefficient of the downstream grooved case in the range of Reynolds number in this study.

고속탄자 유동의 가시화 실험 및 비정렬격자 계산 (Flow Visualization and Unstructured Grid Computation of Flow over a High-Speed Projectile)

  • 이상길;최서원;강준구;임홍규;백영호;김두연;강호철
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.12-20
    • /
    • 1998
  • Exter ballistics of a typical high-speed projectile is studied through a flow-visualization experiment and an unstructured grid Navier-Srokes computation. Experiment produced a schlieren photograph that adequately shows the characteristic features of this complex flow, namely two kinds of oblique cone shocks and turbulent wake developing into the downstream. A hybrid scheme of finite volume-element method is used to simulate the compressible Reynolds-Averaged Navier-Stok- es solution on unstructured grids. Osher's approximate Riemann solver is used to discretize the cinvection term. Higher-order spatial accuracy is obtained by MUSCL extension and van Albada ty- pe flux limiter is used to stabilize the numerical oscillation near the solution discontinuity. Accurate Gakerkin method is used to discretize the viscous term. Explict fourth-order Runge-Kutta method is used for the time-stepping, which simplifies the application of MUSCL extension. A two-layer k-$\varepsilon$ turbulence model is used to simulate the turbulent wakes accurately. Axisymmetric folw and two-dimensional flow with an angle of attack have been computed. Grid-dependency is also checked by carrying out the computation with doubled meshes. 2-D calculation shows that effect of angle of attack on the flow field is negligible. Axi-symmetric results of the computation agrees well with the flow visualization. Primary oblique shock is represented within 2-3 meshes in numerical results, and the varicose mode of the vortex shedding is clearly captured in the turbulent wake region.

  • PDF

나선형 초고층건물의 공력불안정 진동과 공력감쇠에 관한 연구 (A Study on Aerodynamic Damping and Aeroelastic Instability of Helical-shaped Super Tall Building)

  • 김원술;아키히토 요시다;타무라 유키오;이진학
    • 한국전산구조공학회논문집
    • /
    • 제29권1호
    • /
    • pp.95-103
    • /
    • 2016
  • 본 논문에서는 변위응답 및 가속도 응답의 저감 효과에 있어서, 유리한 형상인 $180^{\circ}$ 나선형(Helical $180^{\circ}$) 초고층건물을 대상으로 풍진동실험을 수행하여 나선형 초고층건물의 공력불안정 진동 특성 및 공력감쇠 특성을 조사하였고, 정방형 초고층건물의 결과와 비교분석 하였다. 본 연구에서의 공력감쇠율은 RD법(random decrement technique)을 이용하여 평가하였다. RD법에 의해 평가된 공력감쇠율은 기존문헌 및 준정상가정이론 결과와 비교 검증하였다. 실험결과, 공력진동 실험결과 $180^{\circ}$ 나선형모형의 풍직각방향에 대한 공력불안정 진동은 발생하지 않는 것이 확인되었다. 정방형과 $180^{\circ}$ 나선형 형상에 대한 공력감쇠율을 살펴보면, X방향에 대한 공력감쇠율은 무차원 풍속이 증가와 비례하여 점진적으로 증가하는 경향이 나타났다. 반면, Y방향에 대한 공력감쇠율은 정방형모형과 매우 다른 양상이 나타나는 것을 알 수 있었다.

3차원 곡관에서의 굴절률 일치법을 이용한 맥동 유동의 PIV 측정 (PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method)

  • 홍현지;지호성;김경천
    • 대한기계학회논문집B
    • /
    • 제40권8호
    • /
    • pp.511-517
    • /
    • 2016
  • 3차원의 협착 혈관모델을 3D 프린터를 이용하여 제작하였다. 협착부는 관의 중심축에 대하여 대칭인 형태이며, 협착부가 0도인 직관과 10도로 굽어진 관인 두 가지 모델에 대하여 실험을 수행하였다. 협착모델 내부 속도장을 매질에 대한 왜곡 없이 측정하기 위하여 굴절률일치법을 이용하였다. 정량펌프를 사용하여 발생된 맥동유동은 펌프의 회전속도로 세 가지의 속도조건을 조절하였다. 비정상상태의 속도장은 time-resolved PIV 기법을 이용하여 측정되었다. 주기적인 와류의 생성과 이동은 관 내 최대속도 영역과 관련 있으며, 와류의 크기와 위치 및 대칭성은 레이놀즈수와 관의 기하학적 구조에 영향을 받음을 알 수 있었다. 곡선관에서는 협착부 하류에 재순환 영역이 관찰되며, 이는 혈류역학적 관점에서 혈전의 형성과 침착 가능성을 설명해준다.

Across-wind excitation mechanism for interference of twin tall buildings in tandem arrangement

  • Zu, G.B.;Lam, K.M.
    • Wind and Structures
    • /
    • 제26권6호
    • /
    • pp.397-413
    • /
    • 2018
  • Excitation mechanism of interference effect between two tall buildings is investigated with wind tunnel experiments. Synchronized building surface pressure and flow field measurements by particle image velocimetry (PIV) are conducted to explore the relationship between the disturbed wind flow field and the consequent wind load modification for twin buildings in tandem. This reveals evident excitation mechanisms for the fluctuating across-wind loads on the buildings. For small distance (X/D < 3) between two buildings, the disturbed flow pattern of impaired vortex shedding is observed and the fluctuating across-wind load on the downstream building decreases. For larger distance ($X/D{\geq}3$), strong correlation between the across-wind load of the downstream building and the oscillation of the wake of the upstream building is found. By further analysis with conditional sampling and phase-averaged techniques, the coherent flow structures in the building gap are clearly observed and the wake oscillation of the upstream building is confirmed to be the reason of the magnified across-wind force on the downstream building. For efficient PIV measurement, the experiments use a square-section high-rise building model with geometry scale smaller than the usual value. Interference factors for all three components of wind loads on the building models being surrounded by another identical building with various configurations are measured and compared with those from previous studies made at large geometry scale. The results support that for interference effect between buildings with sharp corners, the length scale effect plays a minor role provided that the minimum Reynolds number requirement is met.