• Title/Summary/Keyword: vortex motion

Search Result 249, Processing Time 0.027 seconds

Measurement of Inward Turbulent Flows in a Rotating with Square Cross-Section $90^{\circ}$ Duct (회전하는 정사각단면 $90^{\circ}$ 곡덕트 내 내향 난류유동 측정)

  • Kim, Dong-Chul;Chun, Kun-Ho;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.627-632
    • /
    • 2000
  • Developing turbulent flows in a rotating 90 degree bend with square cross-section were measured by a hot-wire anemometer. The six orientation hot-wire technique was applied to measured the distributions of 3 mean velocities and 6 Reynolds stress components. Effects of Coriolis and centrifugal forces caused by the curvature and rotation of bend on the mean motion and turbulence structures were experimentally investigated Productive addition of Coriolis and centrifugal forces to the outward radial direction in the entrance region of bend increases the secondary flow intensity according to the rotational speeds. However, after 45 degree of bend, centrifugal force due to the rotation of bend may promote the break down of counter rotating vortex pair into multi-cellular pattern, thereby decreasing the production rate of turbulence energy and Reynolds stresses.

  • PDF

Numerical Study on the Formation of Tumble Motion in Engine Cylinder (엔진내부 텀블 유동 형성에 대한 수치해석적 연구)

  • Lee, Byoung-Seo;Lee, Joon-Sik;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2233-2238
    • /
    • 2003
  • It is well known that organized vortex rotations swirl and tumble greatly affect the mixing, the combustion and heat transfer processes in engine cylinder. We have developed 3 dimensional numerical simulation codes whose predictions make good agreement with the experimental data. Large eddy simulation based on Smagorinsky subgrid scale model was adopted to describe the turbulence of in-cylinder flows. The tumble motions generated by different inclination angles between valve-port and cylinder head have been calculated. The results show that the angles between direction of induced flow and cylinder walls which the flow collides with play a great role in the formation and generation of tumble motions. Therefore, it is inferred that seat angle and inclination angle are important factors of engine design. In addition, the numerical results of different engine speed -1000 rpm and 3000 rpm are very similar in the flow structure.

  • PDF

A CFD ANALYSIS OF THE FLOWFIELD OF A HELICOPTER IN FORWARD MOTION FOR THE STUDY OF PITOT-TUBE FOR INSTALLATION LOCATION (피토튜브 장착위치 선정을 위한 전진 비행하는 헬리콥터 유동장의 CFD 분석)

  • Cho, H.G.;Kang, Y.J.;Kim, S.H.;Myong, R.S.;Cho, T.H.;Park, Y.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.256-261
    • /
    • 2008
  • A CFD analysis of helicopter flowfield in forward flight is considered as non-trivial issue because of the complexity of vorticity-dominated flowfield. In this work, a study on the selection of the proper location for the installation of the Pitot probe is conducted using a CFD code which can deal with the interaction of rotor blade vortex and body. To describe the flow patterns for rotating rotor blades and body, the sliding mesh scheme is utilized. Pressure distributions and flow patterns are also analyzed to identify regions free from the interaction of body and wake induced from rotor blades.

  • PDF

Visualization of rotational flow using SPIV in cylindrical tank (Stereoscopic PIV 속도장 측정기법을 이용한 원통내의 회전 유동장 측정)

  • Choi Jong Ha;Yang Kun Su;Gowda B. H. L.;Sohn Chang Hyun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.44-47
    • /
    • 2004
  • Vortexing might occur during draining from tanks which reduces the rate of outflow. This phenomenon has practical relevance in the fuel feed system in space vehicles and rockets. Due to environmental disturbances rotational motion can be generated in the liquid-propellant tank, which in turn can affect the rate of outflow to the engines. The phenomenon is initialized by rotating the fluid In the experimental tank. The dip quickly develops into a vortex with an air core, which extends to the bottom port, reducing the effective cross-sectional area of the drain outlet and consequently the flow rate. Flow characteristics are investigated using SPIV(Stereoscopic Particle Image Velocimetry) method.

  • PDF

The Effects of Surface Roughness on Heat Transfer in The Reciprocating Channel (왕복운동을하는 채널에서 표면거칠기가 열전달에 미치는 영향)

  • Ahn Soo Whan;Son Kang Pil
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.333-336
    • /
    • 2002
  • This paper describes a detailed experimental Investigation of heat transfer In a reciprocating rectangular channel fitted with rib structures with particular reference to the design of a piston for marine propulsive diesel engine. The parametric test matrix involves Reynolds number, reciprocating frequency, and reciprocating radius, respectively, in the ranges, $1,000\;{\~}\;6,000,\;1.7\;{\~}\;2.5\;Hz,\;and\;7\;{\~}\;15cm$ with four different rib arrangements. The rib arrangements have considerable influences on the heat transfer in the reciprocating channel due to the modified vortex flow structure. The experimental data confirm that the increases in the heat transfer can be seen in order of Case (a), Case (d), Case (c), and Case (b)

  • PDF

A Study on the Characteristics of In-Cylinder Air Flow with 3-D LDV Measurement (3차원 LDV를 이용한 실린더내 공기 유동특성에 관한 연구)

  • Yoo, S.C.
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2006
  • In-cylinder flows in a motored 3.5L four-valve SI engine were investigated quantitatively using three-component LDV system, to determine how engine configuration affects the flow field. The purpose of this work was to develop quantitative methods which correlate in-cylinder flows to engine performance. For this study, two distinct intake/piston arrangements were used to examine the flow characteristics. Quantification of the flow field was done by calculating two major parameters which are believed to characterize adequately in-cylinder motion. These quantities were turbulent kinetic energy(TKE) and tumble ratio in each plane at each crank angle. The results showed that in-cylinder flow pattern is dominated by the intake effects and two counter rotating vortices, developed during the intake stroke, produced relatively low tumble ratio. Therefore, the applicability of these quantities should be carefully considered when evaluating characteristics resulting from the complex in-cylinder flow motions.

  • PDF

Fluid-structure interaction analysis of two-dimensional flow around a moving cylinder (유체-구조 연성 기법을 사용한 움직이는 2차원 실린더 주위의 유동 해석)

  • Lee, Hee-Bum;Rhee, Shin-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.68-74
    • /
    • 2011
  • Recently, thanks to the advanced computational power and numerical methods, it is made possible to analyze the flow around moving bodies using computational fluid dynamics techniques. In those simulations, moving mesh techniques should be able to represent both the body motion and boundary deformation, which are frequently encountered in fluid-structure interaction and/or six degree-of-freedom problems. In the present study, the staggered loosely coupling algorithm was used for fluid-structure interaction and the Laplacian operator based technique was used for moving mesh. For the verification of the developed computational method, the flow around a two-dimensional cylinder was simulated and analyzed.

  • PDF

A STUDY ON THE UNSTEADY AERODYNAMIC ANALYSIS OF HELICOPTER ROTOER USING EULER EQUATIONS AND FREE WAKE METHOD (오일러 방정식과 자유 후류법을 이용한 헬리콥터 로터의 비정상 공력 해석 연구)

  • Lee, Jae-Hun;Wie, Seong-Yong;Kwon, Jang-Hyuk;Lee, Duck-Joo;Kim, Da-Hee
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.116-119
    • /
    • 2007
  • In this study the unsteady aerodynamic analysis of a hovering helicopter rotor is performed. For the accurate flow field analysis Euler equations and the free wake method are coupled. The Euler equations are solved to find the pressure distribution around the rotor, and free wake method is used to give the boundary condition for the solution of Euler equations. Also, vortex strength and wake motion after the rotor are simulated by the free wake method. The accuracy of the present method is compared with the source sink model. The present method is applied to the hovering Caradonna-Tung rotor and compared with experimental results.

  • PDF

A Numerical Study on In-cylinder Flow Fields of an Axisymmetric Engine (축대칭 엔진 실린더내의 유동장에 관한 수치적 연구)

  • 최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.662-670
    • /
    • 1999
  • A numerical prediction was performed to clarify the air motion in the cylinder of an axisymmet-ric four-stroke reciprocating engine at its intake and compression stage. A scheme of finite volume method is used for the calculation. Modified $k-{\varepsilon}$ turbulence model is adopted and wall function is applied to the grids near the wall. The predicted mean velocity and rms velocity profiles showed a reasonable agreement with an available experimental data at its intake and compression stage. The predicted in-cylinder flow fields show that a strong turbulent twin vortex structure is pro-duced during induction but it commences to decay rapidly around inlet valve closure. The mean velocity continues to fall to a low level during compression but the turbulence intensity attains an approximate constant level.

  • PDF

Flow Pattern around Floating Breakwater Using PIV Technique

  • Suh, Sung-Bu;Jung, Kwang-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.11-20
    • /
    • 2010
  • The purpose of this study is the investigation of the wave interaction with the rectangular floating breakwater. The flow profile obtained by PIV technique is represented to understand the vortical flow due to the wave interaction with a rectangular floating breakwater in the roll motion and the fixed condition. Also, the transmission coefficients are compared in both conditions over the extensive wave periods, which represent the performance of breakwater to attenuate the incoming waves. These results would be applied to design the floating breakwater having the mooring system to improve its performance for a certain wave period.