• 제목/요약/키워드: vortex method

검색결과 917건 처리시간 0.027초

추진기 날개 끝 형상변화에 따른 보오텍스 유동에 대한 수치해석 (Numerical Analysis of a Tip Vortex Flow for Propeller Tip Shapes)

  • 박선호;서정화;김동환;이신형;김기섭
    • 대한조선학회논문집
    • /
    • 제48권6호
    • /
    • pp.501-508
    • /
    • 2011
  • In order to control the tip vortex cavitation occurring around the tip of a rotating propeller blade, researches on the propeller cavitation and blade tip vortex flows have been increased. In this paper, the propeller tip vortex flow for a blunt and sharp tips was studied using an unsteady Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. In numerical open water test, torques, thrusts, pressure distributions and vortex flows were compared for various rotating speeds. To consider a hull wake, the nominal wake was specified in inlet boundary condition. Pressure distributions and vortex flows with the hull wake were investigated for various propeller rotating angles. From the results, it was confirmed that the blunt tip propeller delayed the tip vortex flow.

경사수역에 설치된 잠제 주변의 유속장과 와의 발생에 대한 수치모의 (Numerical Simulation of Velocity Fields and Vertex Generation around the Submerged Breakwater on the Sloped Bottom)

  • 허동수;김도삼
    • 한국해안해양공학회지
    • /
    • 제15권3호
    • /
    • pp.151-158
    • /
    • 2003
  • 잠제 주변의 유속장과 와의 발생에 대한 이해는 잠제의 소파메커니즘과 표사 및 구조물의 안정과 관련하여 중요한 기초자료로 활용될 수 있다. 본 연구에서는 일정한 경사수역에 설치된 불투과잠제 주변의 유속장의 해석과 와(vortex)서 발생을 수치적으로 모의하기 위해 자유수면의 추적기법인 VOF법에 기초하고 있는 김 등(2001, 2002)이 제안한 2차원 수치파동수로를 이용하였다. 특히, 잠제 주변의 정상류의 해석을 통해 잠제의 기하형상 및 파랑의 입사조건에 따른 와의 발생형태를 고찰하였다. 수치모의 결과 잠제 전면에서는 반시계 방향의 와가 발생하였고 잠제 후면에서는 시계방향의 와가 발생하였으며 와의 크기는 입사파고와 주기에 가장 민감하였다.

고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석 (Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section)

  • 이강엽;김형모;한영민;이수용
    • 한국전산유체공학회지
    • /
    • 제7권3호
    • /
    • pp.9-16
    • /
    • 2002
  • Most of modem aerospace gas turbines must be operated at a gas temperature which is several hundreds of degrees higher than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and in the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are categorized as 'Impinging Cooling Method' and 'Vortex Cooling Method'. Specially, research of new cooling system(Vortex Cooling Method) that overcomes inefficiency of film cooling and limitation of space. The focus of new cooling system that improves greatly cooling efficiency using less amount of cooling air on surface heat transfer elevation. Therefore, in this study, a numerical analysis has been peformed for characteristics of flow and heat transfer in the swirl chamber and compared with the flow measurements by LDV. Especially, for understanding high heat transfer efficiency in the vicinity of wall, we considered flow structure, vortex mechanism and heat transfer characteristics with variation of the Reynolds number.

Application of a discrete vortex method for the analysis of suspension bridge deck sections

  • Taylor, I.J.;Vezza, M.
    • Wind and Structures
    • /
    • 제4권4호
    • /
    • pp.333-352
    • /
    • 2001
  • A two dimensional discrete vortex method (DIVEX) has been developed to predict unsteady and incompressible flow fields around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow field that the particles collectively induce. This paper gives a brief description of the numerical implementation of DIVEX and presents the results of calculations on a recent suspension bridge deck section. The predictions for the static section demonstrate that the method captures the character of the flow field at different angles of incidence. In addition, flutter derivatives are obtained from simulations of the flow field around the section undergoing vertical and torsional oscillatory motion. The subsequent predictions of the critical flutter velocity compare well with those from both experiment and other computations. A brief study of the effect of flow control vanes on the aeroelastic stability of the bridge is also presented and the results from DIVEX are shown to be in accordance with previous analytical and experimental studies. In conclusion, the results indicate that DIVEX is a very useful design tool in the field of wind engineering.

Bluffbody 비정상 유동장에 대한 수치해석 (Numerical simulation of unsteady flow field behind bluff body)

  • 류명석;강성모;김용모
    • 대한기계학회논문집B
    • /
    • 제21권3호
    • /
    • pp.350-357
    • /
    • 1997
  • The transient incompressible flow behind the axisymmetric bluff body is numerically simulated using the random vortex method(RVM). Based on the vorticity formulation of the unsteady Navier-Stokes equations, the Lagrangian approach with a stochastic simulation of diffusion using random walk technique is employed to account for the transport processes of the vortex elements. The numerical solutions for 2-dimensional recirculating flow behind a backward-facing step in the laminar range of Reynolds number are compared with experimental data. The present simulation focuses on the transitional flow regime where the recirculation zone behind the bluff body becomes highly unsteady and large-scale vortex eddies are shed from the bluff body wake due to intrinsic shear layer instabilities. The unsteady vertical flow structures and the mixing characteristics behind the bluff body are discussed in detail.

심해 라이저의 와류유기 진동해석 (Vortex-Induced Vibration Analysis of Deep-Sea Riser)

  • 박성종;김봉재
    • 한국해양공학회지
    • /
    • 제31권5호
    • /
    • pp.364-370
    • /
    • 2017
  • A numerical model based on the mode superposition method is used to study the vortex-induced vibration response characteristics of a deep-sea riser such as steel catenary riser (SCR). A steel catenary riser can be modeled using a flexible cable with simple supports at both ends. The natural frequency, mode shape and mode curvature of the riser are calculated and the vortex-induced vibration response of the riser is obtained using the equilibrium of the input and output power. The mode superposition method is applied to the vibrational stresses for each mode to calculate the overall riser fatigue life.

Ristorcelli의 압축성 난류 모형을 이용한 초음속 유동의 계산 (Computations of Supersonic Flow with Ristorcelli′s Compressible Turbulence Model)

  • 박창환;박승오
    • 한국전산유체공학회지
    • /
    • 제8권3호
    • /
    • pp.1-6
    • /
    • 2003
  • Three-dimensional endwall flow within a linear cascade passage of high performance turbine blade is simulated with a 3-D Wavier-Stokes CFD code (MOSA3D), which is based on body-fitted coordinate system, pressure-correction and finite volume method. the endwall flow characteristics, including the development and generation of horseshoe vortex, passage vortex, etc. are clearly simulated, consistent with the generally known tendency The effects of both turbulence model and convective differencing scheme on the Prediction performance of endwall flow are systematically analyzed in the present paper. The convective scheme is found to have stronger effect than the turbulence modei on the prediction performance of endwall flow. The present simulation result also indicates that the suction leg of the horseshoe vortex continues on the suction side until it reaches the trailing edge.

수치해석에 의한 심해용 라이저의 와동방출 응답해석 (Response Analysis of Deep Ocean Risers to Vortex-Shedding by Numerical Analysis)

  • 박한일;조효제;정동호
    • 한국해양공학회지
    • /
    • 제13권3B호
    • /
    • pp.65-72
    • /
    • 1999
  • A deep-ocean mining riser pipe is subjected to floating vessel motion as well as environmental forces arising from currents and waves. The dynamic analysis is carried out for a deep-ocean mining riser pipe by using a finite element method. The vortex shedding which excites risers in a direction perpendicular to the flow and induces transverse response is considered. It is demonstrated that transverse displacements due to vortex shedding is greatly increased in lock-in regions. The result of this study is compared with other results having good agreements.

  • PDF

분리판이 부착된 사각형실린더 주위의 유동계산 (Computation of Flow around Single Rectangular Cylinders with a Splitter Plate)

  • 박외철
    • 한국해양공학회지
    • /
    • 제7권2호
    • /
    • pp.30-36
    • /
    • 1993
  • Incompressible, unsteady flow around various single rectangular cylinders of side ratios ranging from 0.005 to 2.0 immersed in uniform flow is computed by the vortex tracing me thod. Results with and without a splitter plate pttached to the rear center of the cylinder are compared. The objective of this study is to investigate predictability of the effects of the splitter plate on drag by the method. Without the splitter plate, computed drag coefficients for cylinders of large side ratios are in good agreement with measured values, but are over predicted for those of small side ratios. With the splitter plate, drag coefficient is reduced significantly due to suppression of vortex growing near the base and interaction between the separated shear layers.

  • PDF

피칭익 주위의 이산와류에 관한 연구 (A Study of Discrete Vortex around a Fitching Foil)

  • 양창조;최민선;이영호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.279-280
    • /
    • 2006
  • In the present study the flow fields around pitching foils have been visualized by using a Schlieren method with a high speed camera in a wind tunnel at low Reynolds number regions. It has been observed that small vortices are shed discretely from the leading and trailing edge and that they stand in line on the integrated streakline of separation shear layer. By counting vortices in the VTR frames it was clarified that the number of vortex shedding from the leading and trailing edge during one pitching cycle strongly depends on the non-dimensional pitching rate.

  • PDF