• Title/Summary/Keyword: vortex interaction

Search Result 364, Processing Time 0.027 seconds

A Study about Vortex Flow Characteristics on Delta Wing by Time-resolving PIV (시간해상도 PIV를 이용한 델타형 날개에서의 와류 유동특성에 관한 연구)

  • Choi, Min-Seon;Lee, Hyun;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.493-499
    • /
    • 2004
  • The dominant effect of the interaction between vortices, generated by the addition of the Leading Edge Extension(LEX) in front of the wing, was well observed in this experiment. In this study, systematic approach by PIV experimental method within a circulating water channel was adopted to study the fundamental characteristics of induced vertex generation, development and its breakdown appearing on a delta wing model with or without LEX in terms of four angles of attack($15^{\circ}$, $20^{\circ}$, $25^{\circ}$, $30^{\circ}$) and six measuring sections(30%, 40%, 50%, 60%, 70%, 80%) of chord length. Distributions of time-averaged velocity vectors and vortices over the delta wing model were compared along the chord length direction. High-speed CCD camera which made it possible to acquire serial images is able to get the detailed information about the flow characteristics occurred on the delta wing. Especially quantitative comparison of the maximum vorticity featuring the induced pressure distribution were also conducted to clarity the significance of the LEX existence.

FLOW CONTROL ON ELLIPTIC AIRFOILS USING SYNTHETIC JET (합성제트를 이용한 타원형 익형 유동제어)

  • Kim, S.H.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.46-52
    • /
    • 2010
  • In the present work, the aerodynamic characteristics of elliptic airfoils which have a 12% thickness ratio are numerically investigated based on Reynolds-averaged Navier-Stokes equations and a transition SST model at a Reynolds number 8.0$\times$105. The numerical simulation of a synthetic jet actuator which is a well-known zero-net-mass active flow control actuator located at x/c = 0.00025, was performed to control massive flow separation around the leading edge of the elliptic airfoils. Four cases of non-dimensional frequencies were simulated at an angle of attack of 12 degree. It is found that the size of the vortex induced by synthetic jets was getting smaller as the jet frequency becomes higher. Comparison of the location of synthetic jets between x/c = 0.00025 (around the leading edge) and x/c = 0.9 (near the separation) shows that the control near the leading edge induces closed recirculation flow regions caused by the interaction of the synthetic jet with the external flow, but the control applied at 0.9c (near the trailing edge) induces a very small and weak vortex which quickly decays due to weak intensity.

PIV analysis of free surface effects on flow around a rotating propeller with varying water depth (자유표면과 수심깊이가 회전하는 프로펠러 주위 유동에 미치는 영향에 대한 PIV 해석)

  • Paik Bu Geun;Lee Jung Yeop;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.40-43
    • /
    • 2004
  • The effects of free surface on wake behind a rotating propeller were investigated experimentally in a circulating water channel with the variation of water depth. Instantaneous velocity fields were measured using two-frame PIV technique at tow different blade phases and ensemble-averaged to investigate the phase-averaged flow structure in the wake region. For an isolated propeller, the flow behind the propeller is influenced by the propeller rotation and the free surface. The phase-averaged mean velocity fields show that the potential wake and the viscous wake are formed by the boundary layers developed on the blade surfaces. The interaction between the tip vortices and the slipstream causes the oscillating trajectory of tip vortices. Tip vortices are generated periodically and the slipstream contracts in the near-wake region. The presence of free surface affects the wake structure largely, when the water depth is less than 0.6D. The free surface modifies the vortex structure, especially the tip and trailing vortices and flow structure in slipstreams of the propeller wake behind X/D = 0.3.

  • PDF

3-D Velocity Fields Measurements of Propeller Wake Using a Stereoscopic PIV (Stereoscopic PIV기법을 이용한 프로펠러 후류의 3차원 속도장 측정)

  • Paik Bu-Geun;Lee Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.185-188
    • /
    • 2002
  • The objective of present paper is to apply a stereoscopic PIV(Particle Image Velocimetry) techiique for measuring the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. It is essential to measure 3-components velocity fields for the investigation of complicated near-wake behind the propeller. The out-of-plane velocity component was measured using the particle images captured by two CCD cameras in the angular displacement configuration.400 instantaneous velocity fields were measured for each of few different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}\;and\;54^{\circ}$. They were ensemble averaged to investigate the spatial evolution of the propeller wake in the region ranged from the trailing edge to the region of one propeller diameter(D) downstream. The phase-averaged velocity fields show the viscous wake formed by the boundary layers developed along the blade surfaces. Tip vortices were formed periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component has large values at the tip and trailing votices. With going downstream, the axial turbulence intensity and the strength of tip vortices were decreased due to the visous dissipation, turbulence diffusion and blade-to-blade interaction. The blade wake traveling at higher speed with respect to the tip vortex overtakes and interacts with tip vortices formed from the previous blade. Tip vortices are separated from the wake and show oscillating trajectory

  • PDF

A Numerical Study on the Heat Transfer Characteristics of Impinging Jet Flow in the Presence of Applied Magnetic Fields (자기장이 인가된 충돌제트의 열전달 특성에 관한 수치적 연구)

  • Lee Hyun Goo;Yoon Hyun Sik;Hong Seung Do;Ha Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.653-661
    • /
    • 2005
  • The present study numerically investigates two-dimensional fluid flow and heat transfer ir the confined jet flow in the presence of applied magnetic field. For the purpose of controlling vortex shedding and heat transfer, numerical simulations to calculate the fluid flow and heat transfer in the confined jet are performed for different Reynolds numbers in the absence and presence of magnetic fields and for different Prandtl numbers of 0.02 (liquid metal), 0.7 (air) and 7 (water) in the range of $0{\le}N{\le}0.05$, where N is the Stuart number (interaction parameter) which is the ratio of electromagnetic force to inertia force. The present study reports the detailed information of flow and thermal quantities in the channel at different Stuart numbers. As the intensity of applied magnetic fields increases, the vortex shedding formed in the channel becomes weaker and the oscillating amplitude of impinging jet decreases. The flow and thermal fields become the steady state if the Stuart number is greater than the critical value. Thus the Nusselt number at the stagnation point representing the heat transfer characteristics also vary as a function of Stuart number.

TWO DIMENSIONAL SIMULATION OF BEAM INJECTION INTO NEUTRAL PLASMA (Beam 전자와 중성 Plasma 사이의 상호작용에 관한 2차원적 수치계산)

  • 선종호;민경욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.113-123
    • /
    • 1990
  • Two dimensional electrostatic model was used to investigate the interactions between beam electron and neutral plasma. It was found that results heavily depend on the beam density. When the beam electron density is lower than the ambient plasma beam density, many beam electrons exhibit vortex structure through beam-plasma interactions and can propagate into the ambient plasma easily from the injection area. On the other hand, when the beam density larget than that of the neutral ambient plasma, it was found that most of the beam electrons constitute return current and ion with much larger mass than that of the electron can be accelerated according to the magnetic field strength. Furthermore, as external field strength varies, it was found that propagation and interaction of the beam can show large dependence on it.

  • PDF

Active Control of Flow-Induced Vibration Using Piezoelectric Actuators (압전 작동기를 이용한 유체 유기 진동의 능동 제어)

  • 한재홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.446-451
    • /
    • 2003
  • This paper presents some examples of active control of flow-induced vibration using piezoelectric actuators. The flutter phenomenon, which is the dynamic instability of structure due to mutual interaction among inertia, stiffness, and aerodynamic forces, may cause catastrophic structural failure, and therefore the active flutter suppression is one of the main objectives of the aeroelastic control. Active flutter control has been numerically and experimentally studied for swept-back lifting surfaces using piezoelectric actuation. A finite element method, a panel aerodynamic method, and the minimum state space realization are involved in the development of the governing equation, which is efficiently used for the analysis of the system and design of control laws with modern control framework. The active control suppressed flow-induced vibrations and extended the flutter speed around by 10%. Another representative flow-induced vibration phenomenon is the oscillation of blunt bodies due to the vortex shedding. In general, it is quite difficult to set up the numerical model because of the strong non-linearity of the vortex shedding structure. Therefore, we applied adaptive positive position feedback controller, which requires no pre-determined model of the plant, and successfully suppressed the flow-induced vibration.

  • PDF

Effects of α-particle beam irradiation on superconducting properties of thin film MgB2 superconductors

  • Kim, Sangbum;Duong, Pham van;Ha, Donghyup;Oh, Young-Hoon;Kang, Won Nam;Hong, Seung Pyo;Kim, Ranyoung;Chai, Jong Seo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.8-13
    • /
    • 2016
  • Superconducting properties of thin film MgB2 superconductors irradiated with 45 MeV ${\alpha}$-particle beam were studied. After the irradiation, enhancement of the critical current density and pinning force was observed, scaling close to strong pinning formula. Double logarithmic plots of the maximum pinning force density with irreversible magnetic field show a power law behavior close to carbon-doped MgB2 film or polycrystals. Variation of normalized pinning force density in the reduced magnetic field suggests scaling formulas for strong pinning mechanism like planar defects. We also observed a rapid decay of critical current density as the vortex lattice constant decreases, due to the strong interaction between vortices and increasing magnetic field.

Flow structure of wake behind a finite circular cylinder (자유단이 있는 원주의 후류 유동특성에 관한 실험적 연구)

  • Lee, Sang-Jun;Jeong,Yong-Sam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.2014-2022
    • /
    • 1996
  • Flow characteristics of the wake behind a finite circular cylinder(FC) mounted on a flat plate was experimentally investigated. Three finite cylinder models having aspect ratio (length to diameter ratio, L/D) of 6,10 and 13 were tested in this study. Wake velocity was measured by a hot-wire anemometry at Reynolds number of 20,000, and the results were compared with those of two-dimensional circular cylinder. As a result, the free-end effect on the wake structure becomes more dominant with decreasing the aspect ratio(L/D) of the finite cylinder. Invisid flow entrained into the wake region decreases the turbulence intensity and periodicity of the vortex shedding due to existence of the free end. From spectral analysis and cross correlation of the velocity signals, vortices having 24Hz frequency characteristics are found in the down wash flow just behind the free end. There exists very complicated flow near the free end due to interaction between the entrained flow and streamwise vortices. Vortex formation region is destroyed significantly in the near wake and shows quite different wake structures from those of 2-D cylinder.

Numerical Simulation of Self-excited Combustion Oscillation in a Dump Combustor with Bluff-body (둔체를 갖는 연소기에서 자려 연소 진동에 관한 수치해석)

  • Kim, Hyeon-Jun;Hong, Jung-Goo;Kim, Dae-Hee;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.659-668
    • /
    • 2008
  • Combustion instability has been considered as very important issue for developing gas turbine and rocket engine. There is a need for fundamental understanding of combustion instability. In this study, combustion instability was numerically and experimentally investigated in a dump combustor with bluff body. The fuel and air mixture had overall equivalence ratio of 0.9 and was injected toward dump combustor. The pressure oscillation with approximately 256Hz was experimentally obtained. For numerical simulation, the standard k-$\varepsilon$ model was used for turbulence and the hybrid combustion model (eddy dissipation model and kinetically controlled model) was applied. After calculating steady solution, unsteady calculation was performed with forcing small perturbation on initial that solution. Pressure amplitude and frequency measured by pressure sensor is nearly the same as those predicted by numerical simulation. Furthermore, it is clear that a combustion instability involving vortex shedding is affected by acoustic-vortex-combustion interaction. The phase difference between the pressure and velocity is $\pi$/2, and that between the pressure and heat release rate is in excitation range described by Rayleigh, which is obvious that combustion instability for the bluff body combustor meets thermoacoustic instability criterion.