• Title/Summary/Keyword: volume-surface ratios

Search Result 95, Processing Time 0.036 seconds

Evaluation of Concrete Material Properties for Pavement Using Job-site Processed Recycled Aggregates (현장재생골재를 사용한 포장용 콘크리트의 기본 물성실험)

  • Yang, Sungchul;Kim, Namho
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.57-63
    • /
    • 2013
  • PURPOSES : This study was performed to investigate a feasibility of job-site use of recycled concrete aggregate exceeding 3% of absorption rate. Test variables are coarse aggregate types such as natural aggregate, job-site processed recycled aggregate, and recycled aggregate processed from the intermediate waste treatment company. METHODS : First, aggregate properties such as gradation, specific gravity and absorption rate were determined. Next a basic series of mechanical properties of concrete was tested. RESULTS : All strength test results such as compression, flexure and modulus were satisfied for the minimum requirements. Finally up to first 48 elapsed days the shrinkage strains of concretes made from both recycled aggregates (in case of volume-surface ratio of 300) appeared to be greater than 26% of the companion concretes made from natural aggregates. CONCLUSIONS : Drying shrinkage result is ascribed to greater absorption rate and specific gravity of those specimens made from recycled aggregate. This may be reduced with an addition of admixtures.

Effects of Volatile Solid Concentration and Mixing Ratio on Hydrogen Production by Co-Digesting Molasses Wastewater and Sewage Sludge

  • Lee, Jung-Yeol;Wee, Daehyun;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1542-1550
    • /
    • 2014
  • Co-digesting molasses wastewater and sewage sludge was evaluated for hydrogen production by response surface methodology (RSM). Batch experiments in accordance with various dilution ratios (40- to 5-fold) and waste mixing composition ratios (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100, on a volume basis) were conducted. Volatile solid (VS) concentration strongly affected the hydrogen production rate and yield compared with the waste mixing ratio. The specific hydrogen production rate was predicted to be optimal when the VS concentration ranged from 10 to 12 g/l at all the mixing ratios of molasses wastewater and sewage sludge. A hydrogen yield of over 50 ml $H_2/gVS_{removed}$ was obtained from mixed waste of 10% sewage sludge and 10 g/l VS (about 10-fold dilution ratio). The optimal chemical oxygen demand/total nitrogen ratio for co-digesting molasses wastewater and sewage sludge was between 250 and 300 with a hydrogen yield above 20 ml $H_2/gVS_{removed}$.

A study on ITZ percolation threshold in mortar with ellipsoidal aggregate particles

  • Pan, Zichao;Wang, Dalei;Ma, Rujin;Chen, Airong
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.551-561
    • /
    • 2018
  • The percolation of interfacial transition zone (ITZ) in cementitious materials is of great importance to the transport properties and durability issues. This paper presents numerical simulation research on the ITZ percolation threshold of mortar specimens at meso-scale. To simulate the meso-scale model of mortar as realistically as possible, the aggregates are simplified as ellipsoids with arbitrary orientations. Major and minor aspect ratios are defined to represent the global shape characteristics of aggregates. Some algorithms such as the burning algorithm, Dijkstra's algorithm and Connected-Component Labeling (CCL) algorithm are adopted for identification of connected ITZ clusters and percolation detection. The effects of gradation and aspect ratios of aggregates on ITZ percolation threshold are quantitatively studied. The results show that (1) the ITZ percolation threshold is mainly affected by the specific surface area (SSA) of aggregates and shows a global decreasing tendency with an increasing SSA; (2) elongated ellipsoidal particles can effectively bridge isolated ITZ clusters and thus lower the ITZ percolation threshold; (3) as ITZ volume fraction increases, the bridging effect of elongated particles will be less significant, and has only a minor effect on ITZ percolation threshold; (4) it is the ITZ connectivity that is essentially responsible for ITZ percolation threshold, while other factors such as SSA and ITZ volume fraction are only the superficial reasons.

Preparation and Characterization of KOH-Activated Carbons Developed from Petroleum Coke

  • Sayed Ahmed, S.A.;Abo El-Enin, Reham M.M.;El-Nabarawy, Th.
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.293-299
    • /
    • 2009
  • Potassium hydroxide activated carbons were prepared from Egyptian petroleum cokes with different KOH/coke ratios and at different activation temperatures and times. The textural properties were determined by adsorption of nitrogen at $-196^{\circ}C$. The adsorption of iodine and methylene blue was also investigated at $30^{\circ}C$. The surface area and the non-micropore volume increased whereas the micropore volume decreased with the increase of the ratio KOH/coke. Also the surface area and porosity increased with the rise of activation temperature from 500 to $800^{\circ}C$. Textural parameter considerably increased with the increase of activation time from 1 to 3 h. Further increasing of activation time from 3 to 4 h was associated with a less pronounced increase in textural parameters. The adsorption of iodine shows the same trend of surface area and porosity change exhibited by nitrogen adsorption, with KOH/coke ratio and temperature of activation. Adsorption of methylene blue follows pseudo-first-order kinetics and its equilibrium adsorption follows Langmuir and D-R models.

Change of the Moisture and Temperature in Planting Ground as Effected by Different Soil Thickness, Soil Mixture Ratios and Ground Cover Plants in the Green Roof System (옥상녹화에서 토심, 토양배합비 및 지피식물에 따른 식재지반 수분 및 온도변화)

  • Ju, Jin Hee;Yoon, Young Han
    • KIEAE Journal
    • /
    • v.10 no.3
    • /
    • pp.11-16
    • /
    • 2010
  • This paper has attempted to investigate the change in soil moisture volume and temperature of architecture by planting ground(soil thickness and soil mixture ratio) and ground cover plants(Sedum sarmentosum, Zoysia japonica, Chrysanthemum zawadskii) for middle region green roof system. For this, a test was conducted on the roof of Konkuk University building from April 2009 to October 2009. In terms of treatment, five types(SL, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$, $P_4P_4L_2$) depending on soil mixture ratio and two types(15cm, 25cm) by soil depth were created. Results of soil moisture volume by soil mixture ratio in the 15cm soil thickness showed that the difference was significance between simple soil and mixture soil treatment, however, the statistical significance was not recognized according to soil mixture ratio. In case of 25cm soil thickness, soil moisture volume by soil mixture ratio was more higher 7Vol.%~10Vol.% in the mixture soil than simple soil treatment. In terms of districts planted ground cover plants, soil volume moisture differed among plants in the order Zoysia japonica 17.74 Vol.%$34.86^{\circ}C$, district non-planted $27.49^{\circ}C$, Sedum sarmentosum $25.11^{\circ}C$, Chrysanthemum zawadskii $23.08^{\circ}C$, Zoysia japonica $24.45^{\circ}C$ respectively So, concrete surface showed more higher $5^{\circ}C{\sim}15^{\circ}C$ than other things among the all the time. Result of inner temperature of the architecture and soil, it was measured inner of architecture $25.69^{\circ}C$, inner district non-planted $24.29^{\circ}C$, Chrysanthemum zawadskii $23.90^{\circ}C$, Zoysia japonica $24.02^{\circ}C$, Sedum sarmentosum $25.13^{\circ}C$, respectively.

An Analytic Analysis for a Two-Dimensional Floating and Fluid-Filled Membrane Structure (부유식 유체저장용 2차원 막구조물의 이론적 해석)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.32-37
    • /
    • 2009
  • An analytic similarity shape solution was studied for a two-dimensional floating and fluid-filled membrane structure. The static shape of a membrane structure can be expressed as a set of nonlinear ordinary differential equations. The integration of curvature leads to an analytic solution for the shape, which contains unknown boundary values. Matching the upper and lower shapes at the free surface incorporated with their buoyancy allowed the unknowns to be determined. Some characteristic values of similarity shapes were evaluated and shapes are illustrated for various density ratios and volume efficiency ratios.

The Effect of Aerated Oil Considering Live Oil Surface Tension on High-Speed Journal Bearing

  • Chun, Sang-Myung
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.103-113
    • /
    • 2001
  • The influence of aerated oil on high-speed journal bearing is examined by classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The live oil surface tension is considered as functions of temperature, API gravity and air volume ratio. With changing eccentricity ratio, it is investigated the effects of air bubbles on the performance of a high-speed plain journal bearing. Just at the moderate eccentricity ratios, even if the involved aeration levels are not so severe and the entrained air bubble sizes are not so small, it is found that the bearing load and friction farce may be changed so visibly for the high speed bearing operation.

  • PDF

Abundance of Epiphytic Dinoflagellates from Jeju Island during Autumn 2009 Revisited with Special Reference to the Surface-to-Volume Ratio of Substrate Macroalgal Species

  • Kim, Hyung Seop;Yih, Wonho;Oh, Mi Ryoung;Jang, Keon Gang;Park, Jong Woo;Ko, Yong Deok
    • Ocean and Polar Research
    • /
    • v.43 no.3
    • /
    • pp.99-111
    • /
    • 2021
  • Occurrence of epiphytic dinoflagellates (EPDs) in coastal waters off Jeju was first reported in 2011 based on 45 substrate samples from 24 macroalgal species. When re-analyzing, the extreme heterogeneous distribution of whole and genus-specific EPDs was reconfirmed across the sampling stations and substrate macroalgal species, as well as even across substrate samples of the same species. Abundance maximum of an EPD genus (cells g-wwt-1) at a fixed surface-to-volume ratio (SA/V ratio) of the macroalgal species increased as the SA/V ratio increased up to 500 (cm2 cm-3). However, the abundance maximum of Ostreopsis further increased even in the MG2 (morphological group 2) macroalgae with the SA/V ratios over 500. The number of substrate macroalgal species on the plane of the MG and sampling station was more or less evenly scattered than the average EPD abundance, which was primarily driven by Gambierdiscus and Ostreopsis. Of the total EPD abundance of the five stations, 90.6% were represented by the two most common and abundant genera, Gambierdiscus and Ostreopsis, each accounting for 41.6% and 49.0%. Spatially, 95.9% of the total EPD abundance was found in St. 4 and St. 5, of which St. 4 with higher water temperature had more Ostreopsis spp. (31.8%), and St. 5 with higher salinity had more Gambierdiscus spp. (27.3%). Thus, the environmental transition to favorable T-S condition to MG2, the thin filamentous macroalgal group with very high SA/V ratios, is thus likely to support further success in EPD genera led by Ostreopsis in the coastal waters of Jeju.

Ion Exchange Modeling in ETA and NH$_3$ Aqueous Solutions (ETA 및 암모니아 수용액에서 이온교환 모델링)

  • 안현경;김상대;이인형
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.307-311
    • /
    • 2003
  • The test did for the determine the optimized ratio of cation to anion in mixed ion exchange demineralizers. Binary, ternary, quaternary, and quinary cation and anion adsorption was performed to develop a comprehensive experimental data set from small-volume batch tests to obtain the selectivity coefficients of many cations and anions. The quantitative run time might be estimated by such ion exchange models as semi-empirical mass action and surface complexation models. The demineralizer can be used longer by increasing the ratios of cation to anion exchange resins in the bed.

  • PDF

DIFFUSION PIECEWISE HOMOGENIZATION VIA FLUX DISCONTINUITY RATIOS

  • Sanchez, Richard;Dante, Giorgio;Zmijarevic, Igor
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.707-720
    • /
    • 2013
  • We analyze piecewise homogenization with flux-weighted cross sections and preservation of averaged currents at the boundary of the homogenized domain. Introduction of a set of flux discontinuity ratios (FDR) that preserve reference interface currents leads to preservation of averaged region reaction rates and fluxes. We consider the class of numerical discretizations with one degree of freedom per volume and per surface and prove that when the homogenization and computing meshes are equal there is a unique solution for the FDRs which exactly preserve interface currents. For diffusion submeshing we introduce a Jacobian-Free Newton-Krylov method and for all cases considered obtain an 'exact' numerical solution (eight digits for the interface currents). The homogenization is completed by extending the familiar full assembly homogenization via flux discontinuity factors to the sides of regions laying on the boundary of the piecewise homogenized domain. Finally, for the familiar nodal discretization we numerically find that the FDRs obtained with no submesh (nearly at no cost) can be effectively used for whole-core diffusion calculations with submesh. This is not the case, however, for cell-centered finite differences.