• Title/Summary/Keyword: volume transport

Search Result 795, Processing Time 0.027 seconds

The Seasonal and Interannual Variability of the Volume Transport through the Western Channel of the Korea Strait

  • Kim, Young-Ju;Takikawa, Tetsutaro;An, Hui-Soo;Yoon, Jong-Hwan
    • Journal of the korean society of oceanography
    • /
    • v.39 no.3
    • /
    • pp.155-162
    • /
    • 2004
  • The variation of volume transport during the period from 1965 to 2000 through the western channel of the Korea Strait was estimated by obtaining an relation function between the ADCP volume transport and the geostrophic volume transport estimated by the sea level difference between Pusan and Izuhara. The estimated climatological mean volume transport during past 36 years has seasonal variation with a minimum of 1.15 Sv in February and a maximum of 1.88 Sv in October. The mean volume transport for 36 years is 1.51 Sv. The annual mean volume transport has an interannual variation with a minimum of 1.26 Sv in 1968 and maximum of 1.90 Sv in 1973, with three dominant periods of variations of 14.96 years, 4.96 years and 2.99 years.

Seasonal Volume Transport Variation and Origin of the Tsushima Warm Current

  • You, Sung-Hyup;Yoon, Jong-Hwan
    • Ocean and Polar Research
    • /
    • v.30 no.2
    • /
    • pp.193-205
    • /
    • 2008
  • A model of the current and seasonal volume transport in the East China Sea was used to investigate the origin of the Tsushima Warm Current (TSWC). The modeled volume transport field suggested that the current field west of Kyushu ($30^{\circ}-32^{\circ}N$) was divided into two regions, R1 and R2, according to the bottom depth. R1 consisted of the Taiwan Warm Current (TWWC) region and the mixed Kuroshio-TWWC (MKT) water region, while R2 was the modified Kuroshio water (MKW) region west of Kyushu. The MKW branched from the Kuroshio and flowed into the Korea/Tsushima Straits through the Cheju-Kyushu Strait, contributing 41% of the annual mean volume transport of the TSWC. The TWWC and MKT water flowed into the Korea/Tsushima Straits through the Cheju-Kyushu and Cheju Straits, contributing 32% and 27% of the volume transport, respectively. The maximum volume transport of the MKW was 53% of the total volume transport of the TSWC in November, while the maximum volume transport of the water in the R1 region through the Cheju-Kyushu Strait was 41% in July. Hence, there were two peaks per year of volume transport in the TSWC.

Volume Transport through the La-Perouse (Soya) Strait between the East Sea (Sea of Japan) and the Sea of Okhotsk

  • Saveliev Aleksandr Vladimirovich;Danchenkov Mikhail Alekseevich;Hong Gi-Hoon
    • Ocean and Polar Research
    • /
    • v.24 no.2
    • /
    • pp.147-152
    • /
    • 2002
  • Seasonal and interannual variation of volume transport through the La-Perouse Strait were estimated using the difference of sea level observed at Krillion of Sakhalin, Russia, and Wakkanai of Hokkaido, Japan, during the period of 1975-1988. Historical sea level measurements between Russian and Japanese tide gauge data were normalized using an independent direct volume transport measurement. Volume transport from the East Sea (Sea of Japan) to the Sea of Okhotsk varied from -0.01 to 1.18 Sv with an annual mean value of 0.61 Sv. Monthly water transport rates showed a unimodal distribution with its maximum occurring in summer (August) and minimum in winter (December-February). The annual mean volume transport varied from 0.2 to 0.8 Sv during the period of 1975-1988 with the maximum variance of 0.6 Sv.

Water Transport during the Single-pass Perfusion Experiments : Effects of Some Perfusates and Their Osmolality (일회통과 관류실험시 물의 수송 : 관류액의 종류와 삼투압의 영향)

  • 이정화;이현주;용철순;오두만
    • YAKHAK HOEJI
    • /
    • v.39 no.4
    • /
    • pp.411-416
    • /
    • 1995
  • The single-pass perfusion experiments were performed in anesthetized rats to investigate the effects of perfusates and their osmolality on the water transport and to determine the correlation between the extent of water transport and the volume change of perfusate. Phenol red was used as a nonabsorbable marker. In normal rats, when perfused at a flow rate of 0.5 ml/min, 2-(N-rnorpholino) ethanesulfonic acid (MES) and S$\phi$rensen's phosphate buffers showed minimal net water transport as 0.125 and 0.173 %/cm of intestinal length, respectively. Hypotonic perfusate of 200 mOsm/kg of water and hypertonic perfusate of 400 mOsm/kg of water generated significant water transport compared with isotonic perfusate of 300 mOsm/kg of water. There was a linear correlation between the extent of water transport and the volume change of perfusate, suggesting that the volume change can be used as a measure of water transport.

  • PDF

Morphological Effect of Dispersed Phase on Gas Separation Properties through Heterophase Polymer Membrane: Theoretical and Experimental Approaches.

  • Park, Cheolmin;Jo, Won-Ho;Kang, Yong-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.55-56
    • /
    • 1996
  • Heterophase polymer system has been attractive for a potential applicability to gas separation membrane material. It has been known that there is a trade-off between gas permeability and its selectivity in common polymers. Therefore, the heterophase polymer can be an alternative for a gas separation membrane material because its transport properties can be readily controlled by blending of two different polymers. The transport properties of immiscible polymer blends strongly depend upon the intrinsic transport properties of corresponding polymers. Another important factor to determine the transport properties is their morphology: volume fraction, size and shape of dispersed phase. Although the effect of the volume fraction of the dispersed phase on the transport properties has been widely investigated, the size and shape effects have been paid attention very much. In an immiscible polymer blend of two polymers, its morphology is primarily controlled by its volume fraction of dispersed phase. Therefore, the effect of the size of the dispersed phase can be hardly seen. Therefore, a block copolymer has been commonly employed to control their morphology when each block is miscible with one or the other phase. In this work, gas transport properties will be measured by varying the morphology of the heterophase polymer membrane. The transport properties will be interpreted in terms of their morphology. The effect of the volume fraction of the PI phase and, in particular, its size effect will be investigated experimentally and theoretically.

  • PDF

Study on the Water and Material Exchange in Deukryang Bay 1. Volume Transport and Turnover Time of Sea Water (득량만의 해수 교환 및 물질 순환에 관한 연구 1 . 해수의 수송량 및 교환 시간)

  • 조규대;이충일
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.311-320
    • /
    • 1998
  • The volume transport and turnover time of the Deukryang Bay. located at the southern area of Korea, were calculated based on the current meter(RCM-7,ACM 16M) data observed at the three gateways of the tegrating observed data and then averaging on time. dangdo and Kogumdo. The total water volume transports through three entrances of the bay in May and October were $3.9{\times}10-2Sv, 3.4{\times}10^{-2}Sv(1Sv=10^6m^3s^{-1}$) and turnover time were 0.97day, 1.12day, respectively. Semidiurnal tides were predominant (70~85%). The water volume transports by residual currents were 2~4% of total water volume transports . The average fraction of fresh water calculated by tidal prism method using salinity difference between inflow current and outflow current through three entrances In Deukryang Bay was about 0.06% of total volume and the flushing time of fresh water was estimated as 0.97day.

  • PDF

Prediction of PolymerSolvent Diffusion Coefficients Using Free-Volume Theory (자유부피이론을 이용한 고분자/용매 확산계수의 예측)

  • 홍성욱
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.27-30
    • /
    • 1997
  • 1. Introduction : Molecular diffusion of small molecules in polymers plays an important role in many areas where polymers are acting as barriers, and in separation processes, such as selective diffusion. Different applications of polymers have different requirements on their transport properties. Therefore, reliable predictions of diffusion coefficients for small molecules in polymeric materials could be a useful tool to design appropriate materials. For many years, the theories based on free-volume concepts have been widely used to correlate and predict diffusion behavior in polymer/solvent systems. In the theory derived by Vrentas and Duda, the empty space between molecules that is available for molecular transport, referred to as hole free-volume, is being redistributed. Molecular transport will occur only when a free-volume of sufficient size appears adjacent to a molecule and the molecule has enough energy to jump into this void. The diffusive jump is considered complete when the void left behind is closed before the molecule returns to its original position. In this paper, the Vrentas-Duda free-volume theory is presented and the methods to estimate free-volume parameters for predicting polymer/ solvent diffusion coefficients are described in detail.

  • PDF

Numerical Upwelling Experiment for Optimum Arrangement of Artificial Seamount (용승을 고려한 인공해중산 최적배치 수치실험)

  • Kim, Seong-Hyeon;Kim, Dong-Sun
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.997-1009
    • /
    • 2011
  • In order to estimate volume transport by upwelling for single artificial seamount, same shape and size of artificial seamount already deployed was applied to numerical experiment. The result showed that strong upwelling appeared at front while took place downwelling at rear. The strongest upwelling existed at the top of the artificial seamount. Volume transport by upwelling was computed as 785 m3/s. Column arrangement was applied to two artificial seamount in three cases; case 1) no clearance, case 2) sixty-five meters of clearance as half of artificial seamount's length, and case 3) hundred-thirty meters of clearance as an artificial seamount's length. All cases of column arrangements showed more upwelling volume transport than that of single seamount. Particularly, the case of no clearance calculated as 106% and appeared the most upwelling effect comparing to two other cases. Row arrangement was also applied to two artificial seamount in three cases; case 4) no clearance, case 5) forty meters of clearance as an artificial seamount's width, and case 6) eighty meters of clearance as twice of artificial seamount's width. Upwelling volume transport in case 4 increased 48% than the case of single seamount. Other two cases of 5 and 6 were estimated as 97% increased and more effective than case 4. According to the case experiments, column arrangements show more upwelling volume transport than that of row arrangements. In cases of column arrangements, with decreasing clearance between two seamount, the effect increases while showing maximum value at clearance zero. In cases of row arrangements, on the contrary, with decreasing clearance between two seamount, the effect decreases while showing minimum value at clearance zero. Since simple barotropic condition was considered for this study, further study is necessary by considering baroclinic condition to get close to reality. In conclusion, in deploying artificial seamount, optimal arrangement should be well designed to enhance primary and secondary productivity and to increase the diversity of species as well as reducing time and space.

Numerical investigation on tortuosity of transport paths in cement-based materials

  • Zuo, Xiao-Bao;Sun, Wei;Liu, Zhi-Yong;Tang, Yu-Juan
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.309-323
    • /
    • 2014
  • Based on the compositions and structures of cement-based materials, the geometrical models of the tortuosity of transport paths in hardened cement pastes, mortar and concrete, which are associated with the capillary porosity, cement hydration degree, mixture particle shape, aggregate volume fraction and water-cement ratio, are established by using a geometric approach. Numerical simulations are carried out to investigate the effects of material parameters such as water-cement ratio, volume fraction of the mixtures, shape and size of aggregates and cement hydration degree, on the tortuosity of transport paths in hardened cement pastes, mortar and concrete. Results indicate that the transport tortuosity in cement-based materials decreases with the increasing of water-cement ratio, and increases with the cement hydration degree, the volume fraction of cement and aggregate, the shape factor and diameter of aggregates, and the material parameters related to cement pastes, such as the water-cement ratio, cement hydration degree and cement volume fraction, are the primary factors that influence the transport tortuosity of cement-based materials.

Seasonal Variation of Volume Transport through the Straits of the East/Japan Sea Viewed from the Island Rule

  • Seung, Young Ho;Han, Soo-Yeon;Lim, Eun-Pyo
    • Ocean and Polar Research
    • /
    • v.34 no.4
    • /
    • pp.403-411
    • /
    • 2012
  • Among others, a question that has long been unanswered is why the seasonal variation of volume transport is larger in the Soya and Korea/Tsushima Straits than in the Tsugaru Strait. An attempt is made to answer this question in terms of the island rule with friction being taken into account. The problem is idealized as a simple model. The model results indicate that volume transport through a channel is determined not only by the circulation created around the adjacent island but also by those created around the neighboring islands farther away. The latter is due to the presence of bottom friction in the channels. The volume transports through the Korea/Tsushima, Tsugaru and Soya Straits estimated from the model using observed wind data show the general pattern of observed seasonality, although they contain large errors associated with the uncertain frictional parameter employed in the model. The model indicates that the observed seasonality arises essentially from the fact that wind stress curl changes its sign, from negative in the summer to positive in winter, following a large fluctuation of zero-stress curl latitude east of Hokkaido.