• Title/Summary/Keyword: volume phase transition temperature

Search Result 52, Processing Time 0.028 seconds

Numerical Modeling of the Transformation Temperature Effect on the Relaxation of Welding Residual Stress (용접 잔류응력 완화에 미치는 변태 온도의 영향에 관한 수치적 모델링)

  • Jang, Gyoung-Bok;Kang, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2552-2559
    • /
    • 2000
  • Most of ferrous b.c.c weld materials have martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is necessary to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions, i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. In this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis. In addition to, since the transformation temperature changes by the kind and control of alloying elements, the steel with many kinds of transformation temperature were selected and the effect of transformation on stress releasement was investigated by the numerical procedures considering phase transformation.

Theoretical Prediction of the Thermodynamic Properties of Liquid-Crystalline p-Azoxyanisole (액정 p-Azoxyanisole의 열역학적 성질에 대한 이론적인 예측)

  • Youngkyu Do;Mu Shik Jhon;Taikyue Ree
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.2
    • /
    • pp.118-128
    • /
    • 1976
  • The significant structure theory of liquids and the Bragg-Williams approximation of phase transition theory have been applied to the calculation of the thermodynamic properties of p-azoxyanisole which exhibits a liquid crystal phase of the nematic type. The isotropic phase was treated as a normal liquid; and for the nematic phase, in addition to its liquidity, the effect due to the arrangement of molecular-dipoles was considered. The liquidity of the p-azoxyanisole was described by the significant structure theory of liquids, and the Bragg-Williams approximation was used to consider the effect due to the arrangement of molecular-dipoles. The molar volume, vapor pressure, heat capacity at constant pressure, thermal expansion coefficient, compressibility, entropy and enthalpy change at the nematic-isotropic phase transition point, absolute entropy, and absolute Helmholtz free energy were calculated over the temperature range of the nematic and isotropic phases. The calculated results of the thermodynamic properties were compared with the experimental data.

  • PDF

N.M.for the Effect of P.T. on Resicual Stress Relaxation (잔류응력 완화에 미치는 상변태의 수치적 모델링)

  • 장경복;손금렬;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.84-89
    • /
    • 1999
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions. i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. consequently, in this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis.

  • PDF

Basic Study on the Application of a Computational Technique to Behavior Characteristics Analysis of the Evaporative Diesel Spray (증발디젤분무의 거동특성해석을 위한 계산기법 적용에 관한 기초 연구)

  • Yeom, J.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.5-12
    • /
    • 2010
  • In this study, an analysis of evaporative diesel spray and an usefulness of a general-purpose program, ANSYS CFX release 11.0, are investigated through the comparison and investigation of the experimental results carried out under an evaporative field, in which there is phase transition, by an exciplex fluorescence method and the results analyzed by the CFX program. The diesel fuel called n-Tridecane, $C_{13}H_{28}$, is injected from a single-hole nozzle (l/d=1.0mm/0.2mm) into a constant volume chamber under a high temperature and pressure. In the same condition as the experimental condition, the analysis was carried out. Both results of the spray tip penetration were almost coincident at each time. The results have validated the usefulness of this analysis. As a result, if the ambient pressure is high, the spray tip penetration will be shortened and move toward the nozzle exit.

Preparation and Biodegradation of Thermosensitive Chitosan Hydrogel as a Function of pH and Temperature

  • Han, Hee-Dong;Nam, Da-Eun;Seo, Dong-Hoan;Kim, Tae-Woo;Shin, Byung-Cheol;Choi, Ho-Suk
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.507-511
    • /
    • 2004
  • We have developed an injectable thermosensitive hydrogel for local drug delivery to treat cancers clinically. We selected chitosan as a polymer matrix because of its biocompatibility and biodegradability. Glycerol 2-phosphate disodium salt hydrate (${\beta}$-GP) was used to neutralize the chitosan solution to physiological pH. The chitosan solution displayed a sol-gel phase transition in a pH-and temperature-dependent manner and formed an endothermic hydrogel after subcutaneous injection into mouse in the presence of ${\beta}$-GP. Additionally, we evaluated the biodegradation of chitosan hydrogel in mice by measuring the volume of injected chitosan hydrogel after subcutaneous injection. The injected chitosan hydrogel in mice was sected and stained with hematoxylin-eosin reagent for histological observation to confirm biodegradation of the hydrogel by the infiltrated cells. Chitosan hydrogel systems that possess biocompatibility and biodegradability could be promising thermosensitive injectable materials useful as depot systems for local anti-cancer drug delivery.

Tuning of the ferromagnetic transition by impurity doping in Ru$Sr_2$EuCe$Cu_2$$O_z$ (불순물 치환을 통한 Ru$Sr_2$EuCe$Cu_2$$O_z$ 계의 강자성 천이온도의 조절특성)

  • Lee H. K;Kim Y. H;Kwon O. H
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.37-40
    • /
    • 2004
  • We investigated the effects of impurity doping on the electrical transport and magnetic properties of TEX>$(Ru, Sn)(Sr, La)<_2$$EuCeCu_2$$O_{z}$ samples. We found that Sn substitution fur Ru causes a significant decrease of the volume fraction of ferromagnetic phase, as well as a decrease of the temperature where the ferromagnetic component is observed. La substitution for Sr leads to an increase of the magnetic ordering temperature with a moderate change of ferromagnetic component. The experimental results are discussed in conjunction with the structural data, transport properties and a possible change of oxygen content.

  • PDF

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF

A Molecular Dynamics Study on the Liquid-Glass-Crystalline Transition of Lennard-Jones System (한 Lennard-jones 시스템의 액체-유리-결정 전이에 관한 분자동역학 연구)

  • Chang, Hyeon-Gu;Lee, Jong-Gil;Kim, Sun-Gwang
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.678-684
    • /
    • 1998
  • By means of constant- pressure molecular dynamics simulations, we studied the liquid- glass- crystalline transition of a system composed of Lennard- Jones particles with periodic boundary conditions. Atomic volume and enthalpy were calculated as functions of temperature during heating and cooling processes. The Wendt- Abraham ratio derived from radial distribution function and the angular distribution function characterizing short range order were analyzed to distinguish between liquid, glass and crystalline states. A liquid phase resulting from a slow heating of an initial fee crystal amorphized on fast quench, but it crystallized on slow quench. When slowly heated, the amorphous phase from fast quench crystallized into an fee structure. A system with free surface was shown to melt from the surface inward at a lower temperature than bulk system and to have a strong tendency for crystallization even during a fast quench from a liquid state.

  • PDF

Preparation of PNIPAM Hydrogel Containing Lipoic Acid (리포익산을 함유한 PNIPAM 하이드로젤의 제조)

  • Yoon, Hye-Ri;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.455-460
    • /
    • 2012
  • Poly(N-isopropylacrylamide) (PNIPAM) hydrogel has been studied as an important drug delivery system due to its volume transition or temperature-responsive swelling properties, whose phase separation temperature is similar to the body temperature. However, because of hydrophilic PNIPAM, hydrophobic drugs are difficult to be uniformly loaded in the networks. Antioxidant alpha-lipoic acid (LA) can be prepared as a polymer(polylipoic acid, PLA) by ring opening polymerization, which is hardly developed as a material due to its low molecular weight and easy depolymerization. To overcome this limitation, a hydrophobic active ingredient, LA was reacted with NIPAM into stable hydrogels. Simple thermal radical reaction successfully resulted in a hydrogel (PNIPAM/PLA), which was confirmed by DSC, FTIR, and Raman spectroscopy. The PNIPAM/PLA showed temperature-responsive properties, and their volume swelling decreased with an increase in lipoic acid content. These hydrogels can carry hydrophobic drugs with PNIPAM and the hydrogels could be useful as final drug delivery systems having lipoic acid as an antioxidant.

Heat Treatment Effects on the Phase Evolutions of Partially Stabilized Grade Zirconia Plasma Sprayed Coatings

  • Park, Han-Shin;Kim, Hyung-Jun;Lee, Chang-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.486-493
    • /
    • 2001
  • Partially stabilized zirconia (PSZ) is an attractive material for thermal barrier coating. Zirconia exists in three crystallographic phases: cubic, tetragonal and monoclinic. Especially, the phase transformation of tetragonal phase to monoclinic phase accompanies significant volume expansion, so this transition generally results in cracking and contributes to the failure of the TBC system. Both the plasma sprayed ZrO$_2$-8Y$_2$O$_3$ (YSZ) coat and the ZrO$_2$,-25CeO$_2$,-2.5Y$_2$O$_3$ (CYSZ) coat are isothermally heat -treated at 130$0^{\circ}C$ and 150$0^{\circ}C$ for 100hr and cooled at different cooling rates. The monoclinic phase is not discovered in all the CYSZ annealed at 130$0^{\circ}C$ and 150$0^{\circ}C$. In the 150$0^{\circ}C$ heat-treated specimens, the YSZ contains some monoclinic phase while none exists in the 130$0^{\circ}C$ heat-treated YSZ coat. For the YSZ, the different phase transformation behaviors at the two temperatures are due to the stabilizer concentration of high temperature phases and grain growth. For the YSZ with 150$0^{\circ}C$-100hr annealing, the amount of monoclinic phase increased with the slower cooling rate. The extra oxygen vacancy, thermal stress, and c to t'phase transformation might suppress the t to m martensitic phase transformation.

  • PDF