• 제목/요약/키워드: volume equation

검색결과 1,216건 처리시간 0.106초

Analysis of Boltzmann transport equation with Finite Volume Method at Spherical coordinate (유한체적법을 통한 구면 좌표계에서의 볼츠만 수송방정식의 해석)

  • Oh, Hyuck-Keun;Jin, Jae-Sik;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1800-1805
    • /
    • 2008
  • A "finite volume method" is proposed to predict heat transport in a spherical enclosure at micro/nanoscale with the Boltzmann transport equation (BTE). The gray version of the BTE with the relaxation time approximation has been applied. Pointing out similarity between radiative transfer equation (RTE) and BTE, the mapping process in RTE is adopted to treat the angular derivative term and linear algebraic discretization equation is derived by using the established method which is used in 2-D BTE in cartesian coordinates. The simulation results are compared to exact solution to RTE for various acoustic thicknesses and ratio of radii. The comparison shows that this method is logical and accurate, and it is possible to easily adopt various models in spherical BTE.

  • PDF

Numerical Analysis for Two-Dimensional Compressible and Two-Phase Flow Fields of Air-Water in Eulerian Grid Framework (2차원 압축공기-물의 압축성 이상 유동 수치 해석)

  • Park, Chan-Wook;Lee, Sung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제32권6호
    • /
    • pp.429-445
    • /
    • 2008
  • Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of each phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe‘s approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated.

Estimation of Individual Tree Volumes for the Japanese Red Cedar Plantations (삼나무조림지(造林地)의 입목(立木) 간재적(幹材積) 추정(推定)에 관(關)한 연구(硏究))

  • Lee, Young Jin;Hong, Sung Cheon;Kim, Dong Geun;Oh, Seung Hwan;Kim, Own Su;Cho, Jeong Ung
    • Journal of Korean Society of Forest Science
    • /
    • 제90권6호
    • /
    • pp.742-746
    • /
    • 2001
  • This study was carried out to develop volume equations for Japanese Res Cedar(Cryptomeria japonica D. Don) trees which were widely planted from 1920s throughout the southern regions in south Korea. The 31 trees for stem analysis were selected in 6 different sites in the southern and 29 trees data were used for developing volume equation. The best equation in estimating Japanese Red Cedar trees's volume was suggested as $V=-0.002908+0.000125D^{1.907114}H^{0.645131}$. The simultaneous F-test for this equation revealed that the estimated individual tree volume was not significantly different (p=0.1936) from the observed tree volume for model evaluation. Therefore, this individual tree volume prediction equation could provide basic information for the construction of yield table and forest management.

  • PDF

Density Measurement of Liquid Mixture and Estimation of Excess Molar Volume by A Cubic Equation of State (액체혼합물의 밀도 측정과 3차 상태방정식에 의한 과잉 몰부피의 예측)

  • Kim, Jung-Min;Bae, Hyo-Kwang
    • Korean Chemical Engineering Research
    • /
    • 제43권5호
    • /
    • pp.637-640
    • /
    • 2005
  • The density of polar-nonpolar liquid mixtures composed of methyl tert-butyl ether(MTBE) and 2,2,4-trimethylpentane, and methyl ethyl ketone (MEK) and 2,2,4-trimethylpentane, and the density of polar-polar liquid mixture of MTBE and MEK were measured by densitometer at 278.15 K, 288.15 K and 298.15 K, respectively. The excess molar volume of the binary systems calculated from the measured density was shown good agreement with the calculated one by the cubic Peng-Robinson- Stryjek-Vera (PRSV) equation of state together with Huron-Vidal mixing rule and it confirmed that the cubic PRSV equation of state could be used in the molar volume calculation of polar mixture.

A Comparative Study of the Navier-Stokes Equation & the Reynolds Equation in Spool Valve Analysis (스풀밸브 해석에서 Navier-Stokes 방정식과 Reynolds 방정식에 의한 비교 연구)

  • Hong, Sung-Ho;Son, Sang-Ik;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • 제28권5호
    • /
    • pp.218-232
    • /
    • 2012
  • In a spool valve analysis, the Reynolds equation is commonly used to investigate the lubrication characteristics. However, the validity of the Reynolds equation is questionable in a spool valve analysis because cavitation often occurs in the groove and the depth of the groove is much higher than the clearance in most cases. Therefore, the validity of the Reynolds equation in a spool valve analysis is investigated by comparing the results obtained from the Reynolds equation and the Navier-Stokes equation. Dimensionless parameters are determined from a nondimensional form of the governing equations. The differences between the lateral force, friction force, and volume flow rate (leakage) obtained by the Reynolds equation and those obtained by the Navier-Stokes equation are discussed. It is shown that there is little difference (less than 10%), except in the case of a spool valve with many grooves where no cavitation occurs in the grooves. In most cases, the Reynolds equation is effective for a spool valve analysis under a no cavitation condition.

Simulation of Flame-Vortex Interaction in Thin Laminar Flamelet Regime (얇은 층류 화염편 영역에서 화염과 와동의 산호 작용)

  • Kang, Ji-Hoon;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.47-54
    • /
    • 1999
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength assigned by the density difference between the burned and the unburned region. The present model provides good agreement with the experimental results by using realistic volume expansion ratio which was not reached in the previous researches. Including volume expansion, the flow predicts the same behavior of measured velocity field qualitatively. The flame propagation in varying flow field due to volume expansion provides a promising way to represent the wrinkled turbulent premixed flames in a numerically efficient manner.

  • PDF

Comparative Study of the Navier-Stokes Equation & the Reynolds Equation in Spool Valve Analysis Considering Cavitation (캐비테이션을 고려한 스풀밸브 해석에서 Navier-Stokes 방정식과 Reynolds 방정식에 의한 비교 연구)

  • Hong, Sung-Ho;Son, Sang-Ik;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • 제29권5호
    • /
    • pp.275-285
    • /
    • 2013
  • The Reynolds equation is commonly used to investigate the lubrication characteristics of a spool valve. However, the applicability of the Reynolds equation is questionable for analyzing a spool valve because cavitation often occurs in the grooves of the valve and the depth of a groove is much higher than the clearance in most cases. In this study, the validity of the Reynolds equation in the spool valve analysis is investigated by comparing the results obtained from the Reynolds equation and those obtained from the Navier-Stokes equation. The results are compared in terms of the lateral forces, friction forces, and volume flow rates (leakages). A significant difference of more than 20% is found in the lateral forces in cases where cavitation occurs and there are many grooves. Therefore, the Navier-Stokes equation should be used to investigate the lubrication characteristics of a spool valve when cavitation occurs and when the spool valve contains many grooves.

Estimating Stem Volume Table of Quercus Acutissima in South Korea using Variable Exponent Equation (변량지수식을 이용한 전국 상수리나무의 입목수간재적표 추정)

  • Ko, Chi-Ung;Kim, Dong-Geun;Kang, Jin-Taek
    • Journal of Korean Society of Forest Science
    • /
    • 제108권3호
    • /
    • pp.357-363
    • /
    • 2019
  • This study was conducted to develop a stem volume table for Quercus acutissima in Korea by using Kozak's stem taper equation. In total, 2700 tree samples were collected around the country, and growth performance was investigated through compiling data on diameters by stem height and stem analysis. In order to test the stem taper equation's fitness, the fitness index (FI), bias, and mean absolute deviation (MAD) were analyzed. The fitness of the equation was estimated at 97%, bias as 0.017, and MAD turned out to be 1.118, respectively. Furthermore, there was a statistically significant volume difference between the current volume table and the new volume table (p = 0.0008, <0.005). The result indicates that using the new volume table that reflects the actual forest will reduce the loss when assessing wood resources and will improve the accuracy of forest statistics for national and local governments. A stem volume table, the main result of this research, which is utilized in the estimated stem taper equation, will provide growth information for Quercus acutissima, one of the main broadleaf species in Korea, and will function as a management indicator for rational forest management.

Developing volume equation of street tree and its carbon stock for urban forest in Seoul (서울시 가로수의 재적식 개발 및 탄소저장량 평가)

  • Son, Yeong Mo;Kim, Kyeong Nam;Pyo, Jung Kee
    • Journal of agriculture & life science
    • /
    • 제50권1호
    • /
    • pp.95-104
    • /
    • 2016
  • The objective of this paper is to develop volume equation of street tree and its carbon stock for urban forest in Seoul. To develop the volume equation by major species in Seoul, data for street trees were obtained from four-species (e.g. Gingko biloba, Platanus occidentalis, Zelkova serrata, and Metasequoia glyptostroboides), which accounted for 79% all street trees in Seoul. This study used a variable based on diameter on breast height and four equation for calculating volume. The coefficient of determination, bias, and root mean square error were used to evaluate the precision of four equations. From these methods, the most suitable equations for Platanus occidentalis was aDb, the other was aD+bD2; coefficient of determination upper on 0.873. From the volume equation developed in this research, the estimated carbon stock were derived as about 33,760tC for four-species of urban forest in Seoul. The results of this paper offered volume equation and carbon stock that present growth information for street trees in urban forestry and these can be made available for evaluating the management for carbon in settlement.

Volume Reduction of Waste Water Sludge using Electrolysis (전기분해를 이용한 하수 슬러지 감량)

  • Lee, Byungheon;Bang, Myunghwan;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • 제22권2호
    • /
    • pp.264-270
    • /
    • 2006
  • In this research, volume reduction of activated sludge using electrolysis was studied to find an optimum condition using lab scale experiments. Wasted sludge was treated by electrolysis with controlling current density, chloride concentration, electrode distance, and reaction time. Volume of return sludge was reduced by 9.79% in average while maximum was 16.7%. Sludge volume reduction efficiency was affected by current density and reaction time. It was reversely proportional to the electrode distance. Especially current density was effective on the system performance significantly. Electric conductivity, salinity and COD were increased by electrolysis implying sludge disintegrated and converted to COD in part. An empirical equation for total solid removal efficiency by electrolysis was proposed by multiple linear regression analysis as: $TS_{rem}$(%) = 5.534 ${\times}$ current density (A/l) + 0.178 ${\times}$ reaction time (m) + 2.758.