• Title/Summary/Keyword: voltage standing wave

Search Result 115, Processing Time 0.023 seconds

Design and Fabrication of Dual-Band Planar Monopole Antenna with Defected Ground Structure for WLAN Applications (WLAN 시스템에 적용 가능한 결함 접지 구조를 갖는 이중대역 평면형 모노폴 안테나 설계 및 제작)

  • Kang, Byeong-Nam;Rhee, Seung-Yeop;Jeong, Min-Joo;Choi, Domin;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.42-49
    • /
    • 2018
  • In this paper, a dual-band microstrip-fed monopole antenna with a DGS(defected ground structure) for WLAN(wireless local area network) applications is presented. The antenna consists of a monopole and a defected ground, which were etched on both sides of the FR-4 substrate. The defected ground structure was used to obtain the dual band, while the step-by-step reduction in the monopole width was used to improve the impedance matching of the antenna. The antenna has an overall compact size of $44{\times}51{\times}1.6mm^3$, which was optimized by varying the size of the monopole and the ground plane such that it may resonate at the 2.4 GHz and 5 GHz bands of the WLAN. The measurement results showed that the antenna operates in the frequency band of 210 MHz(2.29~2.50 GHz) and 900 MHz(5.05~5.95 GHz) for a VSWR under 2, and showed omnidirectional radiation pattern at all desired frequencies.

A Study on the Ultra Small Size 25 Watt High Power Amplifier for Satellite Mobile Communications System at L-Band (L-band 위성통신 시스템을 위한 극소형 25 Watt 고출력증폭기에 관한 연구)

  • Jeon, Joong-Sung;Ye, Byeong-Duck;Kim, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.22-27
    • /
    • 2002
  • The 25 Watt hybrid MIC SSPA has been developed in the frequency rang from 1.6265 GHz to 1.6465 GHz for uplink of INMARST's earth station. To simplify the fabrication process, the whole system is designed of two parts composed of a friving amplifier and a power amplifier. The Motorolas MRF-6401 is used for driving part, the Motorolas MRF-16006 and MRF-16030 is used the power amplifier. We reduced weight and volume of high power amplifier through arranging the bias circuits in the same housing. The realized SSPA has more than 30 dB for gain within 20 MHz bandwidth, and the voltage standing wave ratios(VSWR) of input and output port are less than 1.7, respectively. The output power of 44 dBm is achieved at the 1 dB gain compression point of 106365 GHz These results reveal a high power amplifier of 25 Watt which is the design target. The Proposed SSPA manufacture techniques in this paper can be applied to the implementation of high power amplifiers for some radars and SCPC.

Research on the Multi-electrode Plasma Discharge for the Large Area PECVD Processing

  • Lee, Yun-Seong;You, Dae-Ho;Seol, You-Bin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.478-478
    • /
    • 2012
  • Recently, there are many researches in order to increase the deposition rate (D/R) and improve film uniformity and quality in the deposition of microcrystalline silicon thin film. These two factors are the most important issues in the fabrication of the thin film solar cell, and for the purpose of that, several process conditions, including the large area electrode (more than 1.1 X 1.3 (m2)), higher pressure (1 ~ 10 (Torr)), and very high frequency regime (VHF, 40 ~ 100 (MHz)), have been needed. But, in the case of large-area capacitively coupled discharges (CCP) driven at frequencies higher than the usual RF (13.56 (MHz)) frequency, the standing wave and skin effects should be the critical problems for obtaining the good plasma uniformity, and the ion damage on the thin film layer due to the high voltage between the substrate and the bulk plasma might cause the defects which degrade the film quality. In this study, we will propose the new concept of the large-area multi-electrode (a new multi-electrode concept for the large-area plasma source), which consists of a series of electrodes and grounds arranged by turns. The experimental results with this new electrode showed the processing performances of high D/R (1 ~ 2 (nm/sec)), controllable crystallinity (~70% and controllable), and good uniformity (less than 10%) at the conditions of the relatively high frequency of 40 MHz in the large-area electrode of 280 X 540 mm2. And, we also observed the SEM images of the deposited thin film at the conditions of peeling, normal microcrystalline, and powder formation, and discussed the mechanisms of the crystal formation and voids generation in the film in order to try the enhancement of the film quality compared to the cases of normal VHF capacitive discharges. Also, we will discuss the relation between the processing parameters (including gap length between electrode and substrate, operating pressure) and the processing results (D/R and crystallinity) with the process condition map for ${\mu}c$-Si:H formation at a fixed input power and gas flow rate. Finally, we will discuss the potential of the multi-electrode of the 3.5G-class large-area plasma processing (650 X 550 (mm2) to the possibility of the expansion of the new electrode concept to 8G class large-area plasma processing and the additional issues in order to improve the process efficiency.

  • PDF

Design of Double-Dipole Quasi-Yagi Antenna with 7 dBi gain (7 dBi 이득을 가지는 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.245-252
    • /
    • 2016
  • In this paper, the design of a double-dipole quasi-Yagi antenna (DDQYA) with a gain over 7 dBi at 1.70-2.70 GHz band is studied. The proposed DDQYA consists of two strip dipoles with different lengths and a ground reflector, which are connected trough a coplanar stripline. The length of the second dipole is adjusted to increase the gain in the low frequency band, whereas a rectangular patch director is appended to the DDQYA to enhance the gain in the middle and high frequency band. The effects of the length of the second dipole, and the length and width of the director on the antenna performance are analyzed, and final design parameters to obtain a gain over 7 dBi are obtained. A prototype of the proposed DDQYA is fabricated on an FR4 substrate, and the experimental results show that the antenna has a frequency band of 1.60-2.86 GHz for a VSWR < 2, and measured gain ranges 7.2-7.6 dBi at 1.70-2.70 GHz band.

Gain Enhancement of Double Dipole Quasi-Yagi Antenna Using Meanderline Array Structure (미앤더라인 배열 구조를 이용한 이중 다이폴 준-야기 안테나의 이득 향상)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.447-452
    • /
    • 2023
  • In this paper, gain enhancement of a double dipole quasi-Yagi antenna using a meanderline array structure was studied. A 4×1 meanderline array structure consisting of a meanderline conductor- shaped unit cell is located above the second dipole of the double dipole quasi-Yagi antenna. It was designed to have gain over 7 dBi in the frequency range between 1.70 and 2.70 GHz in order to compare the performance with the case using a conventional strip director. As a result of comparison, the average gain of the double dipole quasi-yagi antenna with the proposed meander line array structure was larger compared to the case with the conventional strip director. A double dipole quasi-Yagi antenna using the proposed meanderline array structure was fabricated on an FR4 substrate and its characteristics were compared with the simulation results. Experiment results show that the frequency band for a VSWR less than 2 was 1.55-2.82 GHz, and the frequency band for gain over 7 dBi was measured to be 1.54-2.83 GHz. The frequency bandwidth with gain over 7 dBi increased, and average gain also slightly increased, compared to the conventional case using a strip director.