• Title/Summary/Keyword: voltage ripple

Search Result 738, Processing Time 0.028 seconds

A High-Efficiency, Auto Mode-Hop, Variable-Voltage, Ripple Control Buck Converter

  • Rokhsat-Yazdi, Ehsan;Afzali-Kusha, Ali;Pedram, Massoud
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.115-124
    • /
    • 2010
  • In this paper, a simple yet efficient auto mode-hop ripple control structure for buck converters with light load operation enhancement is proposed. The converter, which operates under a wide range of input and output voltages, makes use of a state-dependent hysteretic comparator. Depending on the output current, the converter automatically changes the operating mode. This improves the efficiency and reduces the output voltage ripple for a wide range of output currents for given input and output voltages. The sensitivity of the output voltage to the circuit elements is less than 14%, which is seven times lower than that for conventional converters. To assess the efficiency of the proposed converter, it is designed and implemented with commercially available components. The converter provides an output voltage in the range of 0.9V to 31V for load currents of up to 3A when the input voltage is in the range of 5V to 32V. Analytical design expressions which model the operation of the converter are also presented. This circuit can be implemented easily in a single chip with an external inductor and capacitor for both fixed and variable output voltage applications.

Current Ripple Reduction Method of 3-phase Interleaved Bidirectional DC-DC Converter with the Consideration of Input and Output Voltage Variation (입·출력 전압 변동을 고려한 3상 인터리브드 양방향 DC-DC컨버터의 전류리플 저감 기법)

  • Sun, Daun;Jung, Jae-Hun;Nho, Eui-Cheol;Joung, Gyu-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.427-433
    • /
    • 2016
  • This paper proposes a new method for the current ripple reduction of a three-phase interleaved bidirectional DC-DC converter. Usually, the three-phase interleaved bidirectional DC-DC converter is used for battery charging and discharging to reduce battery current ripple. In V2G application, a PWM AC-DC converter is used to connect the AC power grid and three-phase interleaved bidirectional DC-DC converter for battery charging and discharging. The magnitude of DC link voltage affects the battery current ripple magnitude. Therefore, the magnitude of the battery ripple current is analyzed with variations of battery and DC link voltages. The ripple current magnitude is found to be minimized by controlling the DC link voltage. Simulation and experimental results show the usefulness of the proposed method.

Analysis on the Output Ripple of the Non-isolated Boost Charger for the Li-ion Battery

  • Nguyen, Van Sang;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.46-47
    • /
    • 2012
  • In the design of the battery charger it is important to limit the ripple current and voltage according to the manufacturer's recommendation for the reliable service and the extended life of the battery. However, it is often overlooked that these ripple components can cause internal heating of the battery, thereby reducing its service life. Thus the care must be taken in the design of the switching converter for the charge application through the accurate estimation of the output ripple values. In this research analysis on the output ripple of the dc-dc converter is detailed to provide a guideline for the design of the battery charger.

  • PDF

Neutral-Point Voltage Ripple Reduction of High Frequency Injection Sensorless Control of IPMSM Fed by a Three-Level Inverter (3레벨 인버터로 구동되는 IPMSM의 고주파 주입 센서리스 운전에서 중성점 전압 리플 저감)

  • Cho, Dae-Hyun;Kim, Seok-Min;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.867-876
    • /
    • 2020
  • This paper proposes a neutral-point voltage ripple reduction of high frequency injection sensorless control of IPMSM fed by a three-level inverter. The high frequency voltage injection method has been successfully applied to sensorless control for IPMSM at low speed region. In the process of high frequency voltage injection sensorless control for IPMSM, the neutral-point voltage ripple is increased. It should be reduced because it distorts the output current and decreases a life time of DC-link capacitor. The proposed method in this paper reduces the neutral-point voltage ripple by compensating the reference voltage, and the compensation value is calculated simply with reference voltages and currents. The effectiveness of the proposed method is verified by simulation results.

Double Boost Power-Decoupling Topology Suitable for Low-Voltage Photovoltaic Residential Applications Using Sliding-Mode Impedance-Shaping Controller

  • Tawfik, Mohamed Atef;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.881-893
    • /
    • 2019
  • This paper proposes a practical sliding-mode controller design for shaping the impedances of cascaded boost-converter power decoupling circuits for reducing the second order harmonic ripple in photovoltaic (PV) current. The cascaded double-boost converter, when used as power decoupling circuit, has some advantages in terms of a high step-up voltage-ratio, a small number of switches and a better efficiency when compared to conventional topologies. From these features, it can be seen that this topology is suitable for residential (PV) rooftop systems. However, a robust controller design capable of rejecting double frequency inverter ripple from passing to the (PV) source is a challenge. The design constraints are related to the principle of the impedance-shaping technique to maximize the output impedance of the input-side boost converter, to block the double frequency PV current ripple component, and to prevent it from passing to the source without degrading the system dynamic responses. The design has a small recovery time in the presence of transients with a low overshoot or undershoot. Moreover, the proposed controller ensures that the ripple component swings freely within a voltage-gap between the (PV) and the DC-link voltages by the small capacitance of the auxiliary DC-link for electrolytic-capacitor elimination. The second boost controls the main DC-link voltage tightly within a satisfactory ripple range. The inverter controller performs maximum power point tracking (MPPT) for the input voltage source using ripple correlation control (RCC). The robustness of the proposed control was verified by varying system parameters under different load conditions. Finally, the proposed controller was verified by simulation and experimental results.

A Novel High-Performance Strategy for A Sensorless AC Motor Drive

  • Lee, Dong-Hee;Kwon, Young-Ahn
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.81-89
    • /
    • 2002
  • The sensorless AC motor drive is a popular topic of study due to the cost and reliability of speed and position sensors. Most sensorless algorithms are based on the mathematical modeling of motors including electrical variables such as phase current and voltage. Therefore, the accuracy of such variables largely affects the performance of the sensorless AC motor drive. However, the output voltage of the SVPWM-VSI, which is widely used in sensorless AC motor drives, has considerable errors. In particular, the SVPWM-VSI is error-prone in the low speed range because the constant DC link voltage causes poor resolution in a low output voltage command and the output voltage is distorted due to dead time and voltage drop. This paper investigates a novel high-performance strategy for overcoming these problems in a sensorless ac motor drive. In this paper, a variation of the DC link voltage and a direct compensation for dead time and voltage drop are proposed. The variable DC link voltage leads to an improved resolution of the inverter output voltage, especially in the motor's low speed range. The direct compensation for dead time and voltage drop directly calculates the duration of the switching voltage vector without the modification of the reference voltage and needs no additional circuits. In addition, the proposed strategy reduces a current ripple, which deteriorates the accuracy of a monitored current and causes torque ripple and additional loss. Simulation and experimentation have been performed to verify the proposed strategy.

A Study on Voltage and Switching Angle for Maximum Torque/Efficiency and Minimum Torque Ripple of SRM by using SIMULINK$^\textregistered$

  • Cha, Hyun-Rok;Seo, Jong-Yun;Yang, Hyong-yeol;Kim, Kwang-Heon;Lim, Young-Cheol;Jang, Do-Hyun
    • Journal of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.56-64
    • /
    • 2001
  • This paper presents the switching angle and voltage for maximizing the torque or efficiency and minimizing torque ripple of an 8/6, SRM. The approximate analysis and computer simulation determine the switching angle and voltage by using SIMULINK$^\textregistered$. This is performed as a function of the speed and torque required by the load. From the results, new three facts can be known: First, the maximum torque depends on voltage and speed depends on switching angle. The others, the maximum efficiency and minimum torque ripple relay on switching angle. We control the switching angle and voltage of and asymmetrical inverter for the SRM with one-chip micro controller.

  • PDF

A 360Hz DC Ripple-Voltage Suppression Scheme in Three-Phase Soft-Switched Buck Converter (360Hz DC 리플-전압 감소기법을 사용한 3-Phase Soft-Switched Buck Converter)

  • Choi, Ju-Yeop;Ko, Jong-Jin;Song, Joong-Ho;Choy, Ick;Jeong, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.12
    • /
    • pp.813-820
    • /
    • 2000
  • A technique to suppress the low frequency ripple voltage of the DC output in three phase buck diode converter is presented in this paper. The proposed pulse frequency modulation methods and duty ratio modulation methods are employed to regulate the output voltage of the buck diode converter and guarantee zero-current-switching(ZCS) of the switch over the wide load range. The proposed control methods used in this paper provide generally good performance such as low THD of the input line current and unity power factor. In addition, control methods can be effectively used to suppress the low frequency ripple voltage appeared in the dc output voltage. The harmonic injection technique illustrates its validity and effectiveness through the simulations and experiments.

  • PDF

Reactive Power Control of Single-Phase Reactive Power Compensator for Distribution Line (배전선로용 단상 무효전력 보상기의 무효전력제어)

  • Sim, Woosik;Jo, Jongmin;Kim, Youngroc;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.73-78
    • /
    • 2020
  • In this study, a novel reactive power control scheme is proposed to supply stable reactive power to the distribution line by compensating a ripple voltage of DC link. In a single-phase system, a magnitude of second harmonic is inevitably generated in the DC link voltage, and this phenomenon is further increased when the capacity of DC link capacitor decreases. Reactive power control was performed by controlling the d-axis current in the virtual synchronous reference frame, and the voltage control for maintaining the DC link voltage was implemented through the q-axis current control. The proposed method for compensating the ripple voltage was classified into three parts, which consist of the extraction unit of DC link voltage, high pass filter (HPF), and time delay unit. HPF removes an offset component of DC link voltage extracted from integral, and a time delay unit compensates the phase leading effect due to the HPF. The compensated DC voltage is used as feedback component of voltage control loop to supply stable reactive power. The performance of the proposed algorithm was verified through simulation and experiments. At DC link capacitance of 375 uF, the magnitude of ripple voltage decreased to 8 Vpp from 74 Vpp in the voltage control loop, and the total harmonic distortion of the current was improved.

A Voltage Compensation Method to Improve the Control Performance for B4 Inverters (B4 인버터의 제어성능 향상을 위한 전압보상 기법)

  • 오재윤
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.317-320
    • /
    • 2000
  • This paper proposes a voltage compensation method to improve the control performance of B4 inverter which is studied for low-cost drive systems. The B4 inverter employs only four switches and it has a center-tapped connection in the split dc-link capacitors to one phase of a three-phase motor. In the B4 topology unbalan-cd three-phase voltages will be generated by the dc link voltage ripple. To solve this problem we present a voltage compensation method which adjusts switching times considering dc link voltage ripple. The proposed method is verified by simulation results,

  • PDF