• 제목/요약/키워드: voltage profile

검색결과 354건 처리시간 0.027초

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF

Fabrication of Large Area Transmission Electro-Absorption Modulator with High Uniformity Backside Etching

  • Lee, Soo Kyung;Na, Byung Hoon;Choi, Hee Ju;Ju, Gun Wu;Jeon, Jin Myeong;Cho, Yong Chul;Park, Yong Hwa;Park, Chang Young;Lee, Yong Tak
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.220-220
    • /
    • 2013
  • Surface-normal transmission electro-absorption modulator (EAM) are attractive for high-definition (HD) three-dimensional (3D) imaging application due to its features such as small system volume and simple epitaxial structure [1,2]. However, EAM in order to be used for HD 3D imaging system requires uniform modulation performance over large area. To achieve highly uniform modulation performance of EAM at the operating wavelength of 850 nm, it is extremely important to remove the GaAs substrate over large area since GaAs material has high absorption coefficient below 870 nm which corresponds to band-edge energy of GaAs (1.424 eV). In this study, we propose and experimentally demonstrate a transmission EAM in which highly selective backside etching methods which include lapping, dry etching and wet etching is carried out to remove the GaAs substrate for achieving highly uniform modulation performance. First, lapping process on GaAs substrate was carried out for different lapping speeds (5 rpm, 7 rpm, 10 rpm) and the thickness was measured over different areas of surface. For a lapping speed of 5 rpm, a highly uniform surface over a large area ($2{\times}1\;mm^2$) was obtained. Second, optimization of inductive coupled plasma-reactive ion etching (ICP-RIE) was carried out to achieve anisotropy and high etch rate. The dry etching carried out using a gas mixture of SiCl4 and Ar, each having a flow rate of 10 sccm and 40 sccm, respectively with an RF power of 50 W, ICP power of 400 W and chamber pressure of 2 mTorr was the optimum etching condition. Last, the rest of GaAs substrate was successfully removed by highly selective backside wet etching with pH adjusted solution of citric acid and hydrogen peroxide. Citric acid/hydrogen peroxide etching solution having a volume ratio of 5:1 was the best etching condition which provides not only high selectivity of 235:1 between GaAs and AlAs but also good etching profile [3]. The fabricated transmission EAM array have an amplitude modulation of more than 50% at the bias voltage of -9 V and maintains high uniformity of >90% over large area ($2{\times}1\;mm^2$). These results show that the fabricated transmission EAM with substrate removed is an excellent candidate to be used as an optical shutter for HD 3D imaging application.

  • PDF

PVdF-HFP/TiO2 나노복합체 보호층을 통한 리튬금속전지 음극의 전기화학적 성능 향상 (Nanostructured PVdF-HFP/TiO2 Composite as Protective Layer on Lithium Metal Battery Anode with Enhanced Electrochemical Performance)

  • 이상현;최상석;김동언;현준혁;박용욱;유진성;전소윤;박중원;신원호;손희상
    • 멤브레인
    • /
    • 제31권6호
    • /
    • pp.417-425
    • /
    • 2021
  • 고용량 배터리에 대한 요구가 증가에 따라 기존 음극재보다 높은 용량(3,860 mAh/g)과 낮은 전기화학적 전위(-3.040 V)를 갖는 리튬 금속 기반 음극재에 대한 연구가 활발하게 이루어지고 있다. 본 연구에서는 수열 합성을 통해 제작된 아나타제(anatase) 타입의 TiO2 나노 입자 기반한 PVdF-HFP/TiO2 복합체를 리튬 금속 음극의 계면 보호층으로 적용하였다. 결정구조 및 형상 분석을 통해 유/무기-리튬 나노복합체 박막의 형성을 확인하였다. 또한, 전지화학 테스트(사이클 테스트 및 전압 프로파일)를 통해 리튬 금속 음극의 전기화학 성능 은 복합체 보호막이 TiO2 10 wt%, 코팅 두께 1.1 ㎛의 조건에서 가장 개선된 전기화학적 성능(콜롱 효율 유지: 77 사이클 동안 90% 이상) 발현을 확인하였다. 이를 통해, 처리하지 않은 리튬 전극 대비 본 보호층에 의한 리튬 금속 음극의 성능 안정화/개선 효과가 검증되었다.

New in vitro multiple cardiac ion channel screening system for preclinical Torsades de Pointes risk prediction under the Comprehensive in vitro Proarrhythmia Assay concepta

  • Jin Ryeol An;Seo-Yeong Mun;In Kyo Jung;Kwan Soo Kim;Chan Hyeok Kwon;Sun Ok Choi;Won Sun Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권3호
    • /
    • pp.267-275
    • /
    • 2023
  • Cardiotoxicity, particularly drug-induced Torsades de Pointes (TdP), is a concern in drug safety assessment. The recent establishment of human induced pluripotent stem cell-derived cardiomyocytes (human iPSC-CMs) has become an attractive human-based platform for predicting cardiotoxicity. Moreover, electrophysiological assessment of multiple cardiac ion channel blocks is emerging as an important parameter to recapitulate proarrhythmic cardiotoxicity. Therefore, we aimed to establish a novel in vitro multiple cardiac ion channel screening-based method using human iPSC-CMs to predict the drug-induced arrhythmogenic risk. To explain the cellular mechanisms underlying the cardiotoxicity of three representative TdP high- (sotalol), intermediate- (chlorpromazine), and low-risk (mexiletine) drugs, and their effects on the cardiac action potential (AP) waveform and voltage-gated ion channels were explored using human iPSC-CMs. In a proof-of-principle experiment, we investigated the effects of cardioactive channel inhibitors on the electrophysiological profile of human iPSC-CMs before evaluating the cardiotoxicity of these drugs. In human iPSC-CMs, sotalol prolonged the AP duration and reduced the total amplitude (TA) via selective inhibition of IKr and INa currents, which are associated with an increased risk of ventricular tachycardia TdP. In contrast, chlorpromazine did not affect the TA; however, it slightly increased AP duration via balanced inhibition of IKr and ICa currents. Moreover, mexiletine did not affect the TA, yet slightly reduced the AP duration via dominant inhibition of ICa currents, which are associated with a decreased risk of ventricular tachycardia TdP. Based on these results, we suggest that human iPSC-CMs can be extended to other preclinical protocols and can supplement drug safety assessments.