• 제목/요약/키워드: voltage and current stresses

검색결과 128건 처리시간 0.024초

Dual 모드로 동작하는 새로운 ZCS PWM Boost 컨버터 (A Novel ZCS PWM Boost Converter with operating Dual Mode)

  • 김태우;김학성
    • 전력전자학회논문지
    • /
    • 제7권4호
    • /
    • pp.346-352
    • /
    • 2002
  • 본 논문에서는 정류용 다이오드의 역 회복시 발생하는 손실을 줄이기 위한 새로운 듀얼 모드로 동작하는 ZCS-PWM 승압형 컨버터를 제안한다 제안된 회로에서 각각의 스위치는 소프트 스위칭 조건에서 매 사이클마다 교번으로 스위칭 동작을 하고 스위치 $S_2$에 직렬로 공진형 인덕터 Lr을 달아서 스위칭 손실과 EMI 노이즈와 관련된 정류용 다이오드$(D, D_1)$의 역 회복 전류를 감소시켰다. 제안된 컨버터는 기존의 ZVT-PWM 컨버터$^{[2]}$에 수동 및 능동 소자를 더 이상 추가하지 않기 때문에 각 소자들이 받는 전류/전압 스트레스는 기존의 하드 스위칭 컨버터 같다. 본 논문에서는 제안된 회로의 동작을 분석하고 이를 바탕으로 제작 및 실험을 통해서 타당성을 입증하였다.

$Y_{2}O_{3}$가 첨가된 $Pr_{6}O_{11}$계 ZnO 바리스터의 d.c. 스트레스에 따른 안정성 (Stability of $Pr_{6}O_{11}$-Based ZnO Varistors Doped with $Y_{2}O_{3}$ under d.c. Stresses)

  • 윤한수;류정선;남춘우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.551-554
    • /
    • 2000
  • The stability of $Pr_6$$O_{11}$-based ZnO varistors doped with $Y_2$$O_3$ was investigated under various d.c. stresses. The varistors were sintered at $1350^{\circ}C$ for 1h in the addition range of 0.0 to 4.0 mol% $Y_2$$O_3$. The varistors doped with $Y_2$$O_3$ exhibited much higher nonlinearity than that without $Y_2$$O_3$. In Particular, the varistors containing 0.5 mol% $Y_2$$O_3$ showed very excellent V-I characteristics, which the nonlinear exponent was 51.19 and the leakage current was 1.32 $\mu\textrm{A}$. And these varistors also showed an excellent stability, which the variation rate of the varistor voltage and the nonlinear exponent were -0.80% and -2.17%, respectively, under 4th d.c. stress, such as (0.80 $V_ {1mA}$/$90^{\circ}C$/12h)+(0.85 $V_{1mA}$/$115^{\circ}C$/12h)+(0.90 $V_{1mA}$/$120^{\circ}C$/12h)+(0.95 $V_{1mA}$/$125^{\circ}C$/12h). Consequently, since $Pr_ 6$$O_{11}$-based ZnO varistors doped with 0.5 mol% $Y_2$$O_3$ have an excellent stability as well as good nonlinearity, it is expected to be usefully used to develop the superior varistors in future.

  • PDF

자동차 냉각기 호스용 EPDM 고무의 전기화학적 복합노화시험 및 고장메커니즘 (Electrochemical Combined-Stress Degradation Test and Failure Mechanisms of EPDM Rubber for Automotive Radiator Hoses)

  • 곽승범;최낙삼;신세문
    • 대한기계학회논문집A
    • /
    • 제37권1호
    • /
    • pp.1-8
    • /
    • 2013
  • 자동차용 냉각기 고무호스는 열과 기계적 하중을 받으면서 국부적으로 형성된 전기적 영향으로 인해 노화와 고장이 발생한다. 본 연구에서는 개선된 시험방법을 이용하여 고무호스의 파괴거동을 재현하였다. 냉각기 고무호스 재료인 카본블랙이 함유된 EPDM 고무를 사용하여 인장응력과 전기화학적 복합 스트레스를 가하여 노화거동을 분석하였다. 노화 시간에 따른 전류 및 저항의 변화거동을 관찰하였으며 인장 변형 스트레스와 전압 및 노화온도 조건에 따른 노화거동을 분석하였다. 고무 시험편을 수직면으로 정밀하게 절단하여 시험편 표면 및 내부의 변화거동을 분석하여 전기화학적 노화거동과 고장메커니즘을 규명하였다.

Tracking/Erosion Resistance Analysis of Nano-Al(OH)3 Filled Silicone Rubber Insulating Materials for High Voltage DC Applications

  • Kannan, P.;Sivakumar, M.;Mekala, K.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.355-363
    • /
    • 2015
  • HVDC technology has become popular as an economic mode of bulk power transmission over very long distances. Polymeric insulators in HVDC power transmission lines are affected by surface tracking and erosion problems due to contamination deposit, which pose a greater challenge in maintaining the reliability of the HVDC system. In addition, polymeric insulators are also naturally affected by aging due to various environmental stresses, which in turn accelerates the surface tracking and erosion problems. Research works towards the improvement of tracking and erosion resistance of polymeric insulators by adding nano-sized fillers in the base material are being carried out worldwide. However, surface tracking and erosion performance of nano-filled aged polymeric insulators for HVDC applications are not well reported. Hence, in the present work, tracking and erosion resistance of the nano $Al(OH)_3$ filled silicone rubber insulation material has been evaluated under DC voltages at different filler concentrations and aged conditions, as per IEC 60587 test procedures. Leakage current and contact angle measurements were carried out to understand the surface hydrophobicity. Moving average technique was used to analyze the trend followed by leakage current. Water aged specimen shows less tracking resistance when compared with thermal aged specimen. It is observed that nano-filler concentration of 5% is even sufficient to get better tracking/erosion resistance under DC voltages.

PMOSFET에서 Hot Carrier Lifetime은 Hole injection에 의해 지배적이며, Nano-Scale CMOSFET에서의 NMOSFET에 비해 강화된 PMOSFET 열화 관찰 (PMOSFET Hot Carrier Lifetime Dominated by Hot Hole Injection and Enhanced PMOSFET Degradation than NMOSFET in Nano-Scale CMOSFET Technology)

  • 나준희;최서윤;김용구;이희덕
    • 대한전자공학회논문지SD
    • /
    • 제41권7호
    • /
    • pp.21-29
    • /
    • 2004
  • 본 논문에서는 Dual oxide를 갖는 Nano-scale CMOSFET에서 각 소자의 Hot carrier 특성을 분석하여 두 가지 중요한 결과를 나타내었다. 하나는 NMOSFET Thin/Thick인 경우 CHC stress 보다는 DAHC stress에 의한 소자 열화가 지배적이고, Hot electron이 중요하게 영향을 미치고 있는 반면에, PMOSFET에서는 특히 Hot hole에 의한 영향이 주로 나타나고 있다는 것이다. 다른 하나는, Thick MOSFET인 경우 여전히 NMOSFET의 수명이 PMOSFET의 수명에 비해 작지만, Thin MOSFET에서는 오히려 PMOSFET의 수명이 NMOSFET보다 작다는 것이다. 이러한 분석결과는 Charge pumping current 측정을 통해 간접적으로 확인하였다. 따라서 Nano-scale CMOSFET에서의 NMOSFET보다는 PMOSFET에 대한 Hot camel lifetime 감소에 관심을 기울여야 하며, Hot hole에 대한 연구가 진행되어야 한다고 할 수 있다.

플렉서블 CIGS 태양전지의 굽힘 응력에 의한 셀 특성 변화 연구 (Changes of Photovoltaic Properties of Flexible CIGS Solar Cell Under Mechanical Bending Stress)

  • 김성준;김제하
    • 한국전기전자재료학회논문지
    • /
    • 제33권3호
    • /
    • pp.163-168
    • /
    • 2020
  • We studied the change of photovoltaic properties of a flexible CuInxGa(1-x)Se2 (CIGS) solar cell fabricated on polyimide by mechanical bending with curvature radii of 75 mm (75R) and 20 mm (20R). The flexible CIGS cells were flattened on a PET film, then placed and forced against the surface of a curved block fabricated with pre-designed curvatures. Both up (compressive) and down (tensile) bending were applied to a specimen of CIGS on PET with curvatures of 75R and 20R for 10,000 times and 2,000 times, respectively. From J-V measurements, we found that the conversion efficiency (Eff.) was reduced by 3% and 4% for up-and down-bending, respectively, at curvature 75R; it was greatly reduced by 15% for curvature 20R in the up-bending. However, the open circuit voltage (Voc) and short-circuit current density (Jsc) seemed to change little, within 3%, for the applied mechanical stresses. The degradation in Eff. resulted from the deterioration of the series (Rs) and shunt (Rsh) resistances of the solar cell.

Soft-Switching Boost Chopper Type DC-DC Power Converter with a Single Auxiliary Passive Resonant Snubber

  • Nakamura Mantaro;Myoui Takeshi;Abudullh Al Mamun;Nakaoka Mutsuo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.256-260
    • /
    • 2001
  • This paper presents boost and buck and buck-boost DC-DC converter circuit topologies of high-frequency soft switching transition PWM chopper type DC-DC high power converters with a single auxiliary passive resonant snubber. In the proposed boost power converter circuits operating under a principle of ZCS turn-on and ZVS turn-off commutation schemes, the capacitor and inductor in the auxiliary passive resonant circuit works as the loss less resonant snubber. In addition to this, the switching voltage and current peak stresses as well as EMI and RFI noises can be basically reduced by this single passive resonant snubber. Moreover, it is proved that converter circuit topologies with a passive resonant snubber are capable of solving some problems of the conventional hard switching PWM processing based on high-ferquency pulse modulation operation principle. The simulation results of this converter are discussed as compared with the experimental ones. The effectiveness of this power converter with a single passive resonant snubber is verified by the 5kW experimental breadboad set up.

  • PDF

Soft-Switching PWM Boost Chopper-Fed DC-DC Power Converter with Load Side Auxiliary Passive Resonant Snubber

  • Nakamura, Mantaro;Ogura, Koki;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제4권3호
    • /
    • pp.161-168
    • /
    • 2004
  • This paper presents a new circuit topology of high-frequency soft switching commutation boost type PWM chopper-fed DC-DC power converter with a loadside auxiliary passive resonant snubber. In the proposed boost type chopper-fed DC-DC power converter circuit operating under a principle of ZCS turn-on and ZVS turn-off commutation, the capacitor and inductor in the auxiliary passive resonant circuit works as the lossless resonant snubber. In addition to this, the voltage and current peak stresses of the power semiconductor devices as well as their di/dt or dv/dt dynamic stress can be effectively reduced by the single passive resonant snubber treated here. Moreover, it is proved that chopper-fed DC-DC power converter circuit topology with an auxiliary passive resonant snubber could solve some problems on the conventional boost type hard switching PWM chopper-fed DC-DC power converter. The simulation results of this converter are illustrated and discussed as compared with the experimental ones. The feasible effectiveness of this soft witching DC-DC power converter with a single passive resonant snubber is verified by the 5kW, 20kHz experimental breadboard set up to be built and tested for new energy utilization such as solar photovoltaic generators and fuel sell generators.

고효율 절연형 DC-DC 초퍼의 특성해석 (Performance Analysis of High Efficiency DC-DC Chopper added in Electric Isolation)

  • 곽동걸;이봉섭;김춘삼;정도영;김수광
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 추계학술대회 논문집
    • /
    • pp.115-117
    • /
    • 2007
  • This paper is analyzed for DC-DC chopper performance of high efficiency added in electric isolation. The general converters of high efficiency are made that the power loss of the used switching devices is minimized. To achieve high efficiency system, the proposed chopper is constructed by using a partial resonant circuit. The control switches using in the chopper are operated with soft switching for a partial resonant method. The control switches are operated without increasing their voltage and current stresses by the soft switching technology. The result is that the switching loss is very low and the efficiency of chopper is high. And the proposed chopper is added in a electric isolation. When the power conversion system is required to electric isolation, the proposed chopper is adopted with system development of high efficiency. The soft switching operation and the system efficiency of the proposed chopper is verified by digital simulation and experimental results.

  • PDF

Single-Phase Bridgeless Zeta PFC Converter with Reduced Conduction Losses

  • Khan, Shakil Ahamed;Rahim, Nasrudin Abd.;Bakar, Ab Halim Abu;Kwang, Tan Chia
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.356-365
    • /
    • 2015
  • This paper presents a new single phase front-end ac-dc bridgeless power factor correction (PFC) rectifier topology. The proposed converter achieves a high efficiency over a wide range of input and output voltages, a high power factor, low line current harmonics and both step up and step down voltage conversions. This topology is based on a non-inverting buck-boost (Zeta) converter. In this approach, the input diode bridge is removed and a maximum of one diode conducts in a complete switching period. This reduces the conduction losses and the thermal stresses on the switches when compare to existing PFC topologies. Inherent power factor correction is achieved by operating the converter in the discontinuous conduction mode (DCM) which leads to a simplified control circuit. The characteristics of the proposed design, principles of operation, steady state operation analysis, and control structure are described in this paper. An experimental prototype has been built to demonstrate the feasibility of the new converter. Simulation and experimental results are provided to verify the improved power quality at the AC mains and the lower conduction losses of the converter.