• Title/Summary/Keyword: volcanics

Search Result 91, Processing Time 0.018 seconds

Comparative Anatomy of the Hydrothermal Alteration of Chonnam and Kyongsang Hydrothermal Clay Alteration Areas in Korea (전남 및 경상 열수변질 점토광상의 생성환경 비교)

  • Koh, Sang Mo;Chang, Ho Wan
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.81-87
    • /
    • 1997
  • Chonnam and Kyongsang clay alteration areas are distributed in volcanic fields of the Yuchon Group in late Cretaceous period. The host rock of the Chonnam alteration area is generally acidic and that of the Kyongsang alteration area is acidic to dominantly intermediate volcanics. The important difference of two alteration areas is source of fluid; the Chonnam alteration area is characterized by dominantly meteoric water and the Kyongsang alteration area is characterized by dominantly magmatic water. Accordingly, the high temperature minerals such as pyrophyllite and andalusite, and boron bearing minerals such as dumortierite and tourmaline are common in the Kyongsang alteration area. In contrast to this, the lower temperature minerals such as kaolin and alunite are common in the Chonnam alteration area. The mineralogical difference of two alteration areas were depended on the difference of the formation temperature of clay deposits. The other important geochemical difference is the chemistry of hydrothermal solution such as pH. The alteration of "acid-sulfate type" with alteration mineral assemblage of alunite-kaolin-quartz is dominant in the Chonnam alteration area, which was caused by the attack of strong acid and acid solution. In contrast to this, the that of "quartz-sericite type" with the mineral assemblage of sericite-quartz is dominant in the Kyongsang alteration area, which was caused by the attack of neutral or weak acid solution. Also, the Kyongsang and Chonnam alteration areas show the difference in structural setting; the Chonnam alteration area is commonly associated with silicic domes and the Kyongsang alteration area is commonly associated with calderas.

  • PDF

Analysis of Subsurface Geological Structures and Geohazard Pertinent to Fault-damage in the Busan Metropolitan City (부산시 도심지의 지하 지질구조와 단층손상과 관련된 지질위험도 분석)

  • Son, Moon;Lee, Son-Kap;Kim, Jong-Sun;Kim, In-Soo;Lee, Kun
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.87-101
    • /
    • 2007
  • A variety of informations obtained from satellite image, digital elevation relief map (DEM), borehole logging, televiewer, geophysical prospecting, etc were synthetically analyzed to investigate subsurface geological and structural characteristics and to evaluate geohazard pertinent to fault-damage in the Busan metropolitan city. It is revealed that the geology is composed of the Cretaceous andesitic$\sim$dacitic volcanics, gabbro, and granitoid and that at least three major faults including the Dongrae fault are developed in the study area. Based on characteristics of topography, fault-fractured zone, and isobath maps of the Quaternary sediments and weathered residuals of the basement, the Dongrae fault is decreased in its width and fracturing intensity of damaged zone from south toward north, and the fault is segmented around the area between the Seomyeon and Yangieong junctions. Meanwhile, we drew a geohazard sectional map using the five major parameters that significantly suggest damage intensity of basement by fault, i.e. distance from fault core, TCR, RQD, uniaxial rock strength, and seismic velocity of S wave. The map is evaluated as a suitable method to express the geological and structural characteristics and fault-damaged intensity of basement in the study area. It is, thus, concluded that the proposed method can contribute to complement and amplify the capability of the present evaluation system of rock mass.

Geology and Mineral Resources of the Okchǒn Zone-The Boundary between the Okchǒn and Chosǒn Systems in the South of Jechǒn, and the Geology in its Vicinity- (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -제천남부(堤川南部)의 옥천계(沃川系)의 조선계(朝鮮系)의 경계(境界) 및 부근(附近)의 지질(地質)-)

  • Kim, Ok Joon;Min, Kyung Duck;Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.3
    • /
    • pp.225-230
    • /
    • 1986
  • Various interpretations on the boundary between the $Okch{\check{o}}n$ system and the Great Limestone series of the $Chos{\check{o}}n$ system, and on the geologic structure and stratigraphy of the $Okch{\check{o}}n$ system have been yielded by the previous studies, and they are still in hot debate. The present work has mainly studied on the boundary between the $Okch{\check{o}}n$ and $Chos{\check{o}}n$ systems in the south of $Jech{\check{o}}n$, and the geology in its vicinity to clarify the previous misinterpretations if any on the geologic structure and in trun stratigraphy of the area concerned. The boundary between the $Okch{\check{o}}n$ system and the Great Limestone series of the $Chos{\check{o}}n$ system has been thought to be (1) gradational relation which means two systems are the same formation, (2) unconformable relation in which the $Okch{\check{o}}n$ system overlies the $Chos{\check{o}}n$ system, (3) unconformable relation in which the $Chos{\check{o}}n$ system overlies the Okchon system indicating that the age of the $Okch{\check{o}}n$ system is Precambrian, and (4) fault contact in which the $Okch{\check{o}}n$ system of Precambrian age comes in contact with the $Chos{\check{o}}n$ system of Cambro-Ordovician age. The present study clearly found that the relationship between the two systems is a fault zone contact. Shear zone of a width of 300 to 400m is developed, and andesitic volcanics and basic dikes are intruded along the fault zone. This fault contact is exactly the north extension of the Bonghwajae fault, which was denominated long time ago by two of the present authors. The eastern side of the fault has been uplifted so that the $S{\check{o}}changri$ formation of the $Okch{\check{o}}n$ system cropped out in the zone of the Great Limestone series. All the previous workers thought that the $S{\check{o}}changri$ formation rests on the Great Limestone series, but the present study found an overthrust having a strike of $N8^{\circ}E$ and dip of $30^{\circ}NW$ between them, and the $S{\check{o}}changri$ formation has thrusted over the Great Limestone series at the central part of the study area. In the southern and northern parts of this uplifted $S{\check{o}}changri$ formation, the Great Limestone series rests unconformably on it. In the eastern part of the study area where the Mt. Dangdu is located and the previous workers thought that the $S{\check{o}}changri$ formation rests on the Great Limestone series, Precambrian basement rock whose age is older than 1720+50 m.y. crops out in the northern part of the east-west trending high angle fault, and the Great Limestone series rests unconformably on the basement.

  • PDF

Petrochemistry of Mesozoic Granites in Wolchulsan Area (월출산지역에 분포하는 중생대 화강암류에 대한 암석화학적 연구)

  • Kim, Cheong-Bin;Yoon, Chung-Han;Kim, Jeong-Taek;Park, Jay-Bong;Kang, Sang-Won;Kim, Dong-Ju
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.375-385
    • /
    • 1994
  • The studied area is composed of Precambrian gneiss complex, middle Jurassic biotite granite, late Cretaceour sediments, volcanics and pink feldspar granite. Characteristic minerals of the biotite granite is plagioclase and hornblende whereas the pink feldspar granite is pink feldspar (perthite) and quartz. Plagioclase compositions of the biotite granite and the pink feldspar granite are oligoclase to calcic andesine ($An_{18-44}$) and sodic albite ($An_{0.5-5.0}$), respectively. In the variation diagrams of the Harker and normative Q-Or-Pl diagram, the biotite granite belongs to the category from granodiorite to granite, the pink feldspar granite from nomal to late granite. The values of D.I. L.I. and alkalinity of the pink feldspar granite are higher than those of the biotite granite. While CaO is enriched in the biotite granite, $K_2O$ is enriched in the pink feldspar granite. The ratio of $K_2O/Na_2O$ which indicates the relative ratio of alkali is 1.06 in the pink feldspar granite, and 0.86 in the biotite granite. In A-M-F and N-C-K diagrams both these granites are plotted in peraluminus granite ($Al_2O_3$>$Na_2O+K_2O+CaO$) region, assigned to calc alkaline series and alkaline series respectively. Put into the form of A-C-F diagram, the biotite granite falls under I-type, and the pink feldspar granite S-type. On the base of whole rock ratios of $Fe^{+3}/Fe^{+2}+Fe^{+3}$ and $^{87}Sr/^{86}Sr$ for the granites in studied area, the biotite granite indicates ilmenite series (0.26) and S-type and/or contaminated I-type ($0.72020{\pm}0.00050$), the pink feldspar granite magnetite series (0.44) and I-type ($0.70826{\pm}0.00020$).

  • PDF

Volcanological History of the Baengnokdam Summit Crater Area, Mt. Halla in Jeju Island, Korea (제주도 한라산 백록담 일대의 화산활동사)

  • Ahn, Ung San;Hong, Sei Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.221-234
    • /
    • 2017
  • The Baengnokdam, the summit crater of Mt. Halla, is one of the representative geosites of World Natural Heritage and Global Geopark in Jeju Island. The crater is marked by two distinctive volcanic lithofacies that comprise: 1) a trachytic lava dome to the west of the crater and 2) trachybasaltic lava flow units covering the gentle eastern slope of the mountain. This study focuses on understanding the formative process of this peculiar volcanic lithofacies association at the summit of Mt. Halla through field observation and optically stimulated luminescence (OSL) dating of the sediments underlying the craterforming volcanics. The trachyte dome to the west of the crater is subdivided into 3 facies units that include: 1) the trachyte breccias originating from initial dome collapse, 2) the trachyte lava-flow unit and 3) the domal main body. On the other side, the trachybasalt is subdivided into 2 facies units that include: 1) the spatter and scoria deposit from the early explosive eruption and 2) lava-flow unit from the later effusion eruption. Quartz OSL dating on the sediments underlying the trachyte breccias and the trachybasaltic lava-flow unit reveals ages of ca. 37 ka and ca. 21 ka, respectively. The results point toward that the Baengnokdam summit crater was formed by eruption of trachybasaltic magma at about 19~21 ka after the trachyte dome formed later than 37 ka.

Petrology of the Cretaceous volcanic rocks in northern Yucheon Minor Basin, Korea (북부 유천소분지에 분포하는 백악기 화산암류에 대한 암석학적 연구)

  • Sang Wook Kim;Sang Koo Hwang;Yoon Jong Lee;Jae Young Lee;In Seok Koh
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.27-36
    • /
    • 1998
  • The volcanic piles in the northern Yucheon Minor Basin area are the Hagbong basaltic rocks, the Chaeyaksan basaltic rocks, the Jusasan andesitic rocks, the Unmunsa rhyolitic rocks, and the Tertiary voicanics. Stratigraphically, from the lowermost, (1) the Hagbong basaltic rocks are composed mainly of basaltic tuff with two olivine basalt flows intercalated, (2) the Chaeyagsan basaltic rocks are predominantly in tuffs and agglomerate with 3 basaltic flow interlayers, (3) the Jusasan andesitic rocks consist of thick piles of alternated sequences of 4 andesite flows and 5 andesitic tuffs and tuffaceous sediments and (4) the Unmunsa rhyolitic rocks which embed some rhyolite and obsidian are dominant in tuffs such as ash flow and crystal welded tuff. These volcanics reveal distinguishable characteristics in petrochemistry. In discriminating by major elements, the Hagbong and the Chaeyagsan basaltic rocks are alkaline, whereas the latter is also spilitic. In comparison, the volcanic rocks of the Jusasan andesitic rocks and the Tertiary sequences are characteristically calc-alkaline although their distribution is spatially separated. On the other hand, the variations in immobile trace elements indicate that the Hagbong basaltic rocks range from alkaline to calc-alkaline and from WPB/VAB transition to VAB, whereas the Chaeyagsan basaltic rocks are calc-alkaline WPB/VAB transition type and the two others calc-alkaline VAB. In order to show such a variety in their rock series of the volcanic rocks, the environment during their magma generation, magma rising, and post-eruption alteration could be positively considered.

  • PDF

Stratigraphy, Lithology and Diagenetic Mineral Facies of the Tertiary Yeonil Group (제 3기 연일층군의 층서, 암상 및 속성 광물상)

  • Noh Jin Hwan
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.91-99
    • /
    • 1994
  • In the Heunghae area, genetic relationships among sedimentary facies, lithology, stratigraphy and diagenetic mineral facies of the Yeonil Group, are discussed. Conglomerate and sandstone of lower to middle parts of the Yeonil Group contain considerable amounts of volcaniclastic sediments, which were derived from the Tertiary volcanics exposed in the western margins of the sedimentary basin. A new stratigraphic division of the Yeonil Group into the Chunbuk and Pohang Formations is proposed on the basis of sedimentary facies, lithologic characteristics including volcaniclastic feature, and the presence of a key bed of siliceous mudstone overlying the Chunbuk Formation. Diagenetic mineral facies largely depend on the lithology and composition of sediments. Heulandite, smectite, calcite, and opal-CT are commonly found as diagenetic minerals in the Yeonil Group. Among these authigenic minerals, heulandite occurs as the coarse- grained main cement in conglomerates and sandstones of the Chunbuk Formation. Formation of the zeolite cement is favored by partial volcaniclastic lithology of the Chunbuk Formation. Smectite composition and diagenetic mineral facies such as heulandite and opal-CT may reflect that the Yeoil Group has undergone a shallow rial temperature ranging $40{\~}60^{\circ}C$.

  • PDF

Petrology of the Cretaceous igneous rocks in Gadeog Island, Busan, Korea (부산 가덕도 지역 백악기 화성암류에 대한 암석학적 연구)

  • 고정선;김은희;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.47-63
    • /
    • 2004
  • This study focuses on the petrography and petrochemical characteristics of the volcanic and plutonic rocks in Gadeog island, Busan, Korea. Based on textural and mineralogical characteristics, intermediate volcanic rocks can be divided into andesitic lava flows (porphyritic and massive andesites) and andesitic pyroclastics. Felsic volcanic rocks are composed of rhyolite, rhyolitic welded tuff, and tuff breccia. Plutonic rocks are intruded rhyolite and andesitic rocks, and composed of hornblende granodiorite which contains lots of mafic magma enclaves. Volcanic rocks are composed of andesite, dacite and rhyolite having a range in SiO$_2$ from 59 to 78wt.%. The volcanic rocks belong to the calc-alkaline rock series. Plutonic rocks have a range in SiO$_2$ from 63 to 69wt.%. This compositional variations correspond to those of Cretaceous volcanic and plutonic rocks in the southeastern Gyeongsang basin. The trace element composition and rare earth element patterns of the volcanics, which are characterized by high LREE/HFSE ratios and enrichment in LREE, suggest that they are typical of calc-alkaline volcanic rocks produced in the subduction environment around continental arc. We concluded that volcanic and plutonic rocks in Gadeog Island were evolved from orogenic andesitic magma which was produced by partial melting of the mantle wedge in the subduction environment.

Collapse Type and Processes of the Geumosan Caldera in the Southern Gumi, Korea (구미 남부 금오산 칼데라의 함몰 유형과 과정)

  • Hwang, Sang Koo;Son, Young Woo;Seo, Seung Hwan;Kee, Weon-Seo
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.35-48
    • /
    • 2021
  • The Gumi basin, situated in the mid-southeastern Yeongnam Massif, has the Cretaceous stratigraphy that is divided into Gumi Formation, andesitic rocks (Yeongamsan Tuff, Busangni Andesite), rhyolitic rocks (Obongni Tuff, Doseongul Rhyolite, Geumosan Tuff) and Intrusives (ring dikes, other dikes) in ascending order. The Geumosan Tuff is composed mostly of many ash-flow tuffs which are associated with Geumosan caldera along with the ring dikes. The caldera is outlined by ring faults and dikes and has about 3.5 × 5.6 km in diameters. The intracaldera volcanics show a downsag structure that is dipped inward in their flow and welding foliations. The caldera block represent an asymmetric subsidence, which drops 350 m in the northern margin and 600 m in the southern one. Based on these data, the Geumosan caldera is geometrically classified as an asymmetric piston subsidence caldera that suggests a single caldera cycle. The caldera reflects the piston subsidence of the caldera block bounded by the outward-dipping ring faults following a voluminous eruption of magma from the chamber. The downsag in the caldera block refers to the downsagging during the initial subsidence at the same time as the full development of the bound fault. In the ring fissures following the sagging, magma was injected due to the overpressure of magma chamber caused by subsidence.

Geology and Tectonics of the Mid-Central Region of South Korea (남한(南韓) 중부지역(中部地域)의 토질(土質)과 지구조(地構造))

  • Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.2 no.4
    • /
    • pp.73-90
    • /
    • 1969
  • The area studied is a southwestern part of Okcheon geosynclinal zone which streches diagonally across the Korean peninsula in the mid-central parts of South Korea, and is bounded by Charyeong mountain chains in the north and by Sobaek mountain chains in the south. The general trend of the zone is of NE-SW direction known as Sinian direction. Okcheon system of pre-Cambrian age occupies southwestern portion of Okcheon geosynclinal zone, and Choseon and Pyeongan systems of Cambrian to Triassic age in northeastern portion of the zone. It was defined by the writer that the former was called "Okcheon Paleogeosynclinal zone" and the latter "Okcheon Neogeosynclinal zone," although T. Kobayashi named them "Metamorphosed Okcheon zone" and "Non-metamorphosed Okcheon zone" respectively and thought that sedimentary formations in both zones were same in origin and of Paleozonic age, and C.M. Son also described that Okchon system was of post-Choseon (Ordovician) and pre-Kyeongsang (Cretaceous) in age. According to the present study two zones are separated by great fault so that the geology in both zones is not only entirely different in origin and age, but also their geolosical structures are discontinuous. Stratigraphy and structure of Okcheon system are clearly established and defined by the writer and its age is definitely pre-Cambrian. It is clarified by present study that the meta-sediments in and at vicinity of Charyeong mountain chains are correlated to Weonnam series of pre-Cambrian age which occupies and continues from northeast to southwest in and at south of Sobaek mountain chains, and both metasediments constitute basement of Okcheon system. Pyeongan, Daedong and Kyeongsang systems were deposited in few narrow intermontain basins in Okcheon paleogeosynclinal zone after it was emerged at the end of Carboniferous period. Granites of Jurassic and Cretaceous ages and volcanics of Cretaceous age are cropped out in the zone. Jurassic granite is aligned generally with the trend of Okcheon geosynclinal zone, whereas Cretaceous granite lacks of trend in distribution. Many isoclinal folds and thrust faults caused by Taebo orogeny at the end of Jurassic period are also parallel with Sinian directieon and dip steeply to northwest. Charyeong, Noryeong, Sobaek, and Deogyu mountain chains are located in areas of anticlinorium, and Kyongsang system in narrow synclinal zones. Folds in Okcheon neogeosynclinal zone are generally of N 70-80W direction but deviate to Sinian direction at the western parts of the zone. This phenomena is interpreted by the fact that the folds were originated by Songrim disturbance at the end of Triassic period and later partly modified by Taebo orogeny. Thrust faults of Taebo orogeny coentinue from Okcheon paleogeosynclinal zone into neogeosynclinal zone, forming imbricated structure as previously described. Strike-slip faults perpendicular to Sinian direction and shear faults diagonally across it by 55 degrees also prevail in neogeosynclinal zone. It is concluded from viewpoints on geology and geological structure that l)Okchon geosyncline had changed its location and affected by numerous disturbances through geologic time, and 2)mountain chains in the area such as Charyeong, Noryeong, Sobaek, and Deogyu were originated as folded mountains. Differing from others, however, Sobaek range was probably formed at the time of Songrim disturbance and modified later by Taebo orogeny. It is cut by Danyang-Jeomchon fault at the vicinity of Joryeong near Munkyeong village and does not continue to southwest beyond the fault, whereas southwestern portion of erstwhile Sobaek range continues to Taebaek rangd northeastward from Deogyusan passing through Sangju, Yecheon, and Andong. From these evidences, the writer has newly defined the erstwhile Sobaek range in such a way that Sobaek range is restricted only to northeastern portion and Deogyu range is named for the southwestern portion of previous Bobaek range.

  • PDF