• Title/Summary/Keyword: volcanic rocks

Search Result 394, Processing Time 0.027 seconds

Field Investigation and Stability Analysis of a Volcanic Rock Slope at the Song-Gok site, Wan-Do (완도 송곡지구 화산암류 비탈면의 현장조사 및 안정성 검토 사례 연구)

  • Kim, Hong-Gyun;Ok, Young-Seok;Kim, Seung-Hyun;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.149-160
    • /
    • 2013
  • Volcanic activity commonly creates a highly complicated volcanic complex due to the admixture of lava flow and sedimentation of volcanic ash. The Song-Gok site is composed of volcanic rocks that collapsed at the lower part of the slope, in combination with several discontinuities in and around a fault. The results of projection analysis indicated the possibility of plane, wedge, and toppling failure in the failure section. The results of discontinuity modeling using the Distinct Element Method (DEM) revealed a total displacement of 207 mm and a joint shear displacement of 114 mm. The yield surface zone was verified at the fault plane of the failure section. In geotechnical terms, volcanic rock slopes are characteristically vulnerable to failure because of differential weathering among the various rock types, the effect of groundwater based on the permeability of the rocks, and the presence of systematic joints generated by the cooling and contraction of lava. When considering the stability of a volcanic rock slope, it is necessary to consider data such as the geological features of the rock, as obtained through detailed geological survey, and variations in discontinuities and rock blocks.

A Geomorphology on the Ulleungdo (울릉도 지형지)

  • Kwon, Dong-Hi
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.4
    • /
    • pp.39-57
    • /
    • 2012
  • The volcanic edifice of Ulleungdo is largely divided into a shield volcano underwater and a tholoide above seawater. The geological features of the volcano above seawater are basically alkali volcanic rocks that are further divided into five geological strata: agglomerates and tuffs trachyte and phonolite trachytic pumice trachyandesite, and sedimentary layer. The topography of Ulleungdo consists of volcanic landform on the whole, and such volcanic landform is weathered and eroded into various weathering landform, stream landform, coastal landform, structural landform, etc. Major volcanic topography includes caldera basin, central cone, and columnar joint, whereas weathering topography features, tafoni, gnamma, tor, weathered cave, talus, etc. In major coastal topography are sea cliff, wave-cut platform, sea stack, sea arch, sea cave, shingle beach, coastal terrace, etc. For stream topography, its development is minimal except for waterfalls.

Geology and Metallic Mineral Resources of Sinaola State in Mexico (멕시코 시나올라주의 지질 및 금속광물자원)

  • Nam, Hyeong-Tae;Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.257-266
    • /
    • 2013
  • The geology of Sinaola state consists of Precambrian metamorphic rocks(Sonobari Complex), two Paleozoic units(lower non-differentiated metamorphic rocks and upper Carboniferous sedimentary rocks), five Mesozoic units(metavolcanic, clastic, and calcareous rocks), Cenozoic volcanic rocks, and Quaternary clastic sediments and volcanic flows. The Sinaola state is potentially rich in metallic mineral resources with lower degree of non-metallic mineral resources. They are related to a variety of geological environments and are mainly physiographically located on the Sierra Madre Occidental. Mainly known mineral deposits are of gold and silver followed by zinc, lead, copper and some iron. The state also has deposits of molybdenum, tungsten and bismuth that have been occasionally exploited. There is a reference of nickel and cobalt mineralization, but these deposits have been exploited only at a small scale.

K-Ar ages of the hydrothermal clay deposits and the surrounding igneous rocks in southwest Korea (한국 남서부의 열수점토광상과 주변암에 대한 K-Ar 연대 측정)

  • Kim In Joon;Nagao Keisuke
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.58-70
    • /
    • 1992
  • From the K-Ar age determinations for the clay deposits and their surrounded rocks in southwest Korea, the ages of the ore formation in all clay deposits fall in very narrow range from 78.1 to 81.4 Ma. K-Ar ages of clay deposits are slightly younger than those of the Cretaceous volcanic rocks (Hwangsan Formation, 81.4 to 86.4 Ma) and are slightly older than those of the Cretaceous granitic rocks (77.1 to 81.5 Ma). These results indicate that clay deposits were formed with genetical relation to late Cretaceous felsic magmatism. Weolgagsan granite, which has been previously considered to be Cretaceous, is proved to be formed its age in Jurassic (140.9 and 144.8 Ma). The close relationships of K-Ar ages between the clay deposits and Cretaceous granitic rocks suggest that the clay deposits were formed during the hydrothermal alterations caused by the thermal effects (hydrothermal circulation) of the granitic intrusions rather than by the hydrothermal activities associated with volcanic activities.

  • PDF

The Study on Geology and Volcanism in Jeju Island (I): Petrochemistry and $^{40}Ar/^{39}Ar$ Absolute ages of the Subsurface Volcanic Rock Cores from Boreholes in the Eastern Lowland of Jeiu Island (제주도의 지질과 화산활동에 관한 연구 (I): 동부지역 저지대 시추코어 화산암류의 암석화학 및 $^{40}Ar/^{39}Ar$ 절대연대)

  • Koh, Gi-Won;Park, Jun-Beom;Park, Yoon-Suk
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.93-113
    • /
    • 2008
  • This study presents petrochemistry and $^{40}Ar/^{39}Ar$ absolute ages of subsurface volcanic rock cores from twenty(20) boreholes in the eastern lowland (altitude loom below) of Jeju Island, Handeong-Jongdal-Udo-Susan-Samdal-Hacheon areas, and discusses topography and volcanism in the area. The subsurface volcanic rock cores are mainly basalts in composition with minor tholeiitic andesites and basaltic trachyandesites. Sequences of intercalated tholeiitic, transitional and alkalic lavas suggest that tholeiitic and transitional to alkalic lavas must have erupted contemporaneously. Especially, occurrences of trachybasalts and basaltic trachyandesites at the bases in the area imply that the volcanism in the area was initiated with slightly differentiated alkaline magma activity. The $^{40}Ar/^{39}Ar$ absolute ages of the subsurface volcanic rock cores range from $526{\pm}23ka\;to\;38{\pm}4Ka$. The lava-forming Hawaiian volcanic activities of the eastern lowland can be divided into five sequences on the basis of sediment distribution, whole rock geochemistry and $^{40}Ar/^{39}Ar$ absolute ages of the subsurface volcanic rock cores; stage I-U$(550{\sim}400Ka)$, stage II$(400{\sim}300Ka)$ and stage III$(300{\sim}200Ka)$ during syn-depositional stage of Seoguipo Formation, and stage IV$(200{\sim}100Ka)$ and stage V(younger than 100Ka) during post-depositional stage. In the eastern lowland of Jeju Island, compositional variations and local occurrences of the subsurface volcanic rocks as well as existences of various intercalated sediment layers (including hydrovolcanogenic clasts) suggest that the volcanism must have continued for long time intermittently and that the land has been progressively glowed from inland to coast by volcanic activities and sedimentation. It reveals that the subsurface volcanic rocks in the eastern lowland of Jeju Island must have erupted during relatively younger than 200Ka of stages IV and V. The results of this study are partly in contrast with those of previous studies. This study stresses the need that previous reported volcanic activities in Jeju Island based on K-Ar ages of volcanic rocks should be carefully reviewed, and that stratigraphic correlation from boreholes should be conducted by quantitative criteria combined with petrography and petrochemstry as well as radiometric studies of volcanic rock cores.

K-Ar Age Detwermination of a Lava Stalagmite in Manjang Cave Jeju Island Korea

  • Okada, Toshinori;Itaya, Tetsumaru;Sawa, Isao;Hong, Shi-Hwan
    • Journal of the speleological society of Korea
    • /
    • v.42 no.2
    • /
    • pp.17-28
    • /
    • 1995
  • THE K-AR METHOD of age determination is commonly used to date rocks from Pleistocene volcanoes in Japan (e.g. Kaneoka et al. 1980, Itaya et al. 1984, Shimizu et al. 1988, Itaya et al. 1989). However. there are still many problems with K-Ar dating of the young volcanic rocks, as reviewed by Itaya and Nagao (1988).(omitted)

  • PDF

백두산 화산군 환경과 동굴 암석의 년대측정 및 성분분석

  • 김경훈
    • Journal of the Speleological Society of Korea
    • /
    • v.34 no.35
    • /
    • pp.32-42
    • /
    • 1993
  • The Paektu-san mountains are geographically situated in the Korea strait to the north of the main peninsula, coordinated between the longitudes of W(127$^{\circ}$15'~128$^{\circ}$00')and E(128$^{\circ}$15'~129$^{\circ}$00'), and between the latitudes of S(41$^{\circ}$15'~42$^{\circ}$00') and N(42$^{\circ}$10'~42$^{\circ}$40'). The volcanic group of the Paektu-san mountains can be devided into 2 main kinds of volcanos by the method investigation, The ashes are mainly made of tremolite, trachte, basalt and pumice, or, a little quartz, labradorite and volcanic glass. These sorts, ratios and forms of the rocks are respectively similar. The Haeven lake is surrounded by 19 peaks. The central volcanic cone is a secant cone in shape, with an altitude of the 1800m to 2749,2m (Chang-kun-bong), an average diameter of 10km, and a shape of an ellipse seen high from the plane. They say there were several eruptions in 1668, 1700 and 1702 A. D. The crystal structure of the rock sample collected at the cave of Mt. Paektu-san is monoclinic. The quantitative analysis of the rock samples in the cave is done by using XRF this time. The chemical compositions by XRF fundamamental parameter analysis is : SiO$_2$: 50.72Wt%, TiO = 2.422Wt%, $Al_2$O$_3$= 17.65Wt%, Fe$_2$O$_3$= 9.371Wt%, CaO = 8.711Wt%, MgO = 4.l19Wt%, MnO = 0.l15Wt%, $K_2$O = 1.369Wt%, Na$_2$O : 3.028Wt% and P$_2$O$_{5}$ = 0.365Wt%. The K-Ar age of the rock sample is also determined to be 0.16Ma. This paper describes some problems experienced in dating young volcanic rocks, and then discusses chemical compositions, X-ray fluorescence analyses and the age of the formation of a lava tunnel such as in Mt. Paektu-san.n.

  • PDF

Petrochemistry on igneous rocks in the Mt. Mudeung area (무등산 지역에 분포하는 화성암류의 암석화학)

  • 김용준;박재봉;박병규
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.214-233
    • /
    • 2002
  • Igneous rocks of Mt. Mudeung area are composed of Pre-Cambrian granite gneiss, Triassic hornblende-biotite granodiorite, Jurassic quartz diorite and Cretaceous igneous rocks. The Cretaceous igneous rocks consist of volcanic rocks (Hwasun andesite, Mudeung-san dacite and Dogok rhyolite) and granitic rocks (micrograpic granite and quartz porphyry). Major elements of the Cretaceous igneous rocks represent calc-alkaline rock series and correspond to a series of differentiated products from cogenetic magma. Igneous activity of Mt. Mudeung area started from volcanic activity, and continued to intrusive activity at end of the Cretaceous. In chondrite normalized REE pattern, most of igneous rocks of Mt. Mudeung area show similar pattern of Eu (-) anomaly. This is a characteristic feature of granite in continental margin by tectonic movement. Variation diagrams of total REE vs. La/Yb V vs. SiO$_2$ indicate differentiation and magnetite fractionation sequential trend of Hwasun andesite longrightarrowMudeungsan dacitelongrightarrowquartz porphyry. In mineral composition of these igneous rocks in mt. Mudeung area, composition of plagioclase and biotite coincidence with variation of whole rock composition, and emplacement and consolidation of magma is about 15 km (about 4.9 Kbar) in Jurassic quartz diorite and 2.0~3.2 km (0.6~1.0 Kbar) in Triassic hornblende-biotite granodiorite used by amphibolite geobarometer. Parental magma type of these granitic rocks of nt. Mudeung area corresponds to VAG field in Pearce diagram, and I-type in ACF diagram.

Geochemical Dispersion of Elements in Volcanic Wallrocks of Pyrophyllite Deposits in Milyang Area, Kyeongnam Province (밀양지역 납석광상 화산암질 모암에서의 원소들의 지구화학적 분산)

  • Oh, Dae-Gyun;Chon, Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.337-347
    • /
    • 1993
  • Mineralogical and geochemical studies on some pyrophyllite deposits in Milyang area, Kyeongnam Province (Milyang and Sungjin mine) were carried out in order to investigate dispersion patterns of chemical elements in altered volcanic wallrocks, and to interpret genetic environments of the pyrophyllite deposits. Cretaceous andesitic and tuffaceous rocks, and pyrophyllite ore specimens were collected from the dumps and drilling cores. Andesitic wallrocks were grouped as unaltered and altered rocks in the order of pyrophyllitization. Vertical dispersion patterns and relative mobilities of chemical elements in volcanic wallrocks were discussed. Geochemical environment in the Milyang area is characterized by the occurrence of boron minerals such as dumortierite coexisting with pyrophyllite ores, and tourmaline in granitic rocks. Unaltered andesitic rocks are mainly composed of plagioclase, pyroxene and hornblende, and were propylitized and saussuritized. Altered andesitic rocks are bleached and consist of quartz, sericite, pyrophyllite, kaolinite, chlorite and disseminated pyrite. Pyrophyllite ores are mainly composed of quartz, pyrophyllite, dumortierite, dissemianted pyrite and some diaspore. Enrichment of $SiO_2$, $Al_2O_3$, LOI (loss on ignition), As and Cr, and depletion of $K_2O$, $Na_2O$, CaO, MgO and total Fe are characteristic during alteration process. The REE patterns show that the pyrophyllite deposits could be originated from the continental margin volcanics. The $(La/Lu)_{cn}$ ratios of the pyrophyllite ores increase from 4.2~23.2 to 2.67~128.8 owing to strong acidic hydrothermal alteration. Vertical dispersion patterns of $Al_2O_3$, $K_2O$, $Na_2O$, CaO, MgO, $Fe_2O_3$ (total Fe), As, Au, Sb, Cr and Sr in the wallrocks show the location of orebodies. Particularly dispersion patterns of $Al_2O_3$ and Cr indicate the extension of orebodies. Anomalous distribution of Au, As and Sb in wallrocks shows potential for gold occurrence below the pyrophyllite deposits. Judging from the relative mobilities of elements in wallrocks, $Al_2O_3$ could be added from hydrothermal solution, and the silicified rone be formed from the excess of $SiO_2$.

  • PDF

Engineering Geological Characteristics of volcanic rocks of the Northwestern Cheju Island, Korea (제주도 북서부 지역 화산암체의 지질공학 특성)

  • 김영기;최옥곤
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.19-37
    • /
    • 1991
  • The geology of the northwestern Cheju Island consist of Pleistocene to Holocene volcanic rocks which could be devided into basalt layers, the Sungsan Formation composed mainly of volcaniclastic debris exposed along the shoreline, and more than 30 cinder cones. Columnar joints and vesicles are dominant in the basalts of the Pyeosunri and the Sihungri basalt Formations. Volcaniclast and clay layers are intercalated in basaltic layers. When volcaniclast of the interlayers would be swept away by ground water and some caves of channel shape would be formaed. Overlying lavas cracked by columnar joints could be easily destroyed, collapsed and/or sunk. Geomechananical nature of the rocks such as strength may be controlled by the vesicularity(size, shape, and orientation of the vesicles) of the rocks. On the basis of vesicularity as a factor of strength, the effective strength ratio(Ke) could be calculated as Ke=0.3-0.72, in which the smaller Ke value reflects the lower in internal stress. In the studied area, the strength of the rocks tends to decrease as increasing in altitude of provenance of the rocks. The rocks in the area show relatively low values in angle of failure strength($\phi$) ranging from 10$^{\circ}$ to 30$^{\circ}$. In conclnsion, the rocks in question, majority of which the critical value exceeds 0.33, belong to the unstable rocks in the aspect of engineering geology.

  • PDF