• Title/Summary/Keyword: volcanic plume

Search Result 13, Processing Time 0.03 seconds

High Atmospheric Loading for $SO_2$ and Sulfate Observed in the Kanto Area, Japan During the Miyakejima Volcanic Eruption

  • Ma, Chang-Jin;Cao, Renqiu;Tohno, Susumu;Kasahara, Mikio
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E2
    • /
    • pp.69-77
    • /
    • 2006
  • Combined gas and aerosol measurements at a downwind area of the volcanic plume would be essential for helping to access the impact of the volcanic eruption on the local ecosystem and residents. An intensive and the fine time resolution measurement of $SO_2$, sulfate and PM2.5 was made to estimate their distribution in the Kanto area of Japan during the Miyakejima volcanic eruption period. In Tokyo, the 1 hr average $SO_2$ concentration observed before the eruption was 23.9 ppbv, while that of after eruption was 140.4 ppbv. In the Saitama Prefecture, the average concentration of $SO_2$ marked in the present study was two times higher than the average before the volcanic eruption. The PM2.5 mass concentrations in Sitama ranged from 3.8 to $136{\mu}g\;m^{-3}$. Sulfate accounts for $4.4{\sim}39.6%$ of PM2.5 in Sitama. The good correlationship between the concentrations of $SO_2$ and sulfate was obtained. The results of the VAFTAD and HYSPLIT models indicate that $SO_2$, sulfate, and PM2.5 measured in the present study would be expected to be significantly affected by the Miyakejima volcanic plume.

Monitoring and Forecasting the Eyjafjallajökull Volcanic Ash using Combination of Satellite and Trajectory Analysis (인공위성 관측자료와 궤적분석을 이용한 Eyjafjallajökull 화산재 감시와 예측)

  • Lee, Kwon Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.139-149
    • /
    • 2014
  • A new technique, namely the combination of satellite and trajectory analysis (CSTA), for exploring the spatio-temporal distribution information of volcanic ash plume (VAP) from volcanic eruption. CSTA uses the satellite derived ash property data and a matching forward-trajectories, which can generate airmass history pattern for specific VAP. In detail, VAP properties such as ash mask, aerosol optical thickness at 11 ${\mu}m$ ($AOT_{11}$), ash layer height, and effective radius from the Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite were retrieved, and used to estimate the possibility of the ash forecasting in local atmosphere near volcano. The use of CSTA for Iceland's Eyjafjallaj$\ddot{o}$kull volcano erupted in May 2010 reveals remarkable spatial coherence for some VAP source-transport pattern. The CSTA forecasted points of VAP are consistent with the area of MODIS retrieved VAP. The success rate of the 24 hour VAP forecast result was about 77.8% in this study. Finally, the use of CSTA could provide promising results for VAP monitoring and forecasting by satellite observation data and verification with long term measurement dataset.

The Volcanic Eruption Velocity and Tumulus of Jeju Island Controlled by the Natural Intelligence (자연 지능 제어에 의한 제주도의 화산 폭발 속도와 튜물러스)

  • Lee, Seong kook;Lee, Moon Ho;Kim, Jeong Su
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.493-499
    • /
    • 2022
  • This paper reports the results of the eruption of a volcano on Jeju Island at a certain rate, and the tumulus formed after the eruption and the basalt that erupted from the middle of Mt. Halla washed up to the sea. We analyzed the speed when basalt underground magma breaks through the neutral zone on the ground with an absolute temperature of about 1000K and explodes at an absolute temperature of 1200K at an altitude of 1950m. The density of combustion gas becomes smaller than the surrounding air due to the plume volcanic eruption, which is the heat flow of the flame column due to buoyancy, and buoyancy is generated and an updraft is formed. Flame pillars are classified as continuous, intermittent, and buoyant flame zones. As the speed of the flame pillar of Mt. Halla (1950m) falls from the highest point it has risen, potential energy is converted into kinetic energy and is caused by the flow of fluid, solving these two equations equal, the volcanic eruption velocity is 87.5 m/s. At this time, the density of magma is inversely proportional to the temperature. Geomunoreum (456m) had an explosion speed of 42.6m/s.

Remote Sensing of Atmospheric Trace Species using Multi Axis Differential Optical Absorption Spectroscopy (Multi Axis DOAS를 이용한 대기미량 물질 원격 측정)

  • Lee Chul-Kyu;Kim Young-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.141-151
    • /
    • 2006
  • UV-visible absorption measurement techniques using several horizone viewing directions in addition to the traditional zenith-sky pointing have been recently developed in ground-based remote sensing of atmospheric constituents. The spatial distribution of various trace gases close to the instrument can be derived by combing several viewing directions. Multi-axis differential optical absorption spectroscopy (MAX-DOAS) technique, one of the remote sensing techniques for air quality measurements, uses the scattered sunlight as a light source and measures it at various elevation angles (corresponding to the viewing directions) by sequential scanning with a stepper motor. A MAX-DOAS system developed by GIST/ADEMRC has been applied to measuring trace gases in urban air and plumes of the volcano and fossil fuel power plant in January, May, and October 2004, respectively. MAX-DOAS spectra were analyzed to identify and quantify $SO_2,\;NO_2,\;BrO,\;and\;O_4$ (based on Slant Column Densities, SCD) in the urban air, volcanic plume, and fossil fuel power plant utilizing theirs specific structured absorption features in the UV-visible region. Vertical scan through the multiple elevation angles was performed at different directions perpendicular to the plume dispersion to retrieve cross-sectional distribution of $SO_2\;or\;NO_2$ in the plumes of the volcano and fossil fuel power plant. Based on the estimated cross sections of the plumes the mixing ratios were estimated to 580 $SO_2$ ppbv in the volcanic Plume, and 337 $NO_2\;and\;227\;SO_2$ ppbv in the plume of the fossil fuel power plant, respectively.

A Case Study of Ionic Components in the Size-resolved Ambient Particles Collected Near the Volcanic Crater of Sakurajima, Japan

  • Ma, Chang-Jin;Kim, Ki-Hyun;Kang, Gong-Unn
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.72-79
    • /
    • 2010
  • In this study, the ionic composition of volcanogenically derived particles and their temporal and spatial distributions have been investigated to evaluate the impact of the volcanic eruption on the local ecosystem and residents. To this end, an intensive field study was conducted to measure the size-segregated particulate matters at the east part of Sakurajima in Japan. Fractionated sampling of particles into > $PM_{10}$, $PM_{10-2.5}$, and $PM_{2.5}$ was made by a multi nozzle cascade impactor (MCI). The concentration of various ions present in the size-resolved particles was determined by Ion chromatography. The time dependent 3-dimensional Volcanic Ash Forecast Transport And Dispersion (VAFTAD) model developed by the NOAA Air Resources Laboratory (ARL) indicated that the sampling site of this work was affected by the volcanic aerosol particles plume. The temporal distributions of sulfate and $PM_{2.5}$ during the field campaign were significantly variable with important contributions to particle mass concentration. The chlorine loss, suspected to be caused by acidic components of volcanic gases, occurred predominantly in fine particles smaller than $10\;{\mu}m$.

Geochemistry and K-Ar Age of Alkali Basalts from Weno Island, Caroline Islands, Western Pacific (서태평양 캐롤라인군도 웨노섬 알칼리 현무암류의 지구화학 및 K-Ar 연대)

  • Lee, Jong-Ik;Hur, Soon-Do;Park, Byong-Kwon;Han, Sang-Jun
    • Ocean and Polar Research
    • /
    • v.23 no.1
    • /
    • pp.23-34
    • /
    • 2001
  • Geochemical and Sr-Nd isotopic compositions and K-Ar ages are analyzed in volcanic rocks from Weno Island, Caroline Islands. Seven Weno lava samples of alkali basalt and basaltic trachyandesite are aphyric or sparsely phyric comprising olivine, plagioclase, and clinopyroxene phenocrysts. Whole-rock geochemical variation of Weno lavas reflects main fractional crystallization of olivine and Cr-spinel phenocrysts. Newly determined K-Ar ages of Weno lavas range from 6.7 to 11.3 Ma (late Miocene), indicating their formation during primary volcanic stage of Chuuk Islands. Trace element compositions of Weno lavas are very similar to those of typical ocean island basalts (OIBs), suggesting their formation during intra-plate mantle plume activity. The plume composition is isotopically very similar to that of Hawaiian hot spot. However, the age span of Chuuk volcanism is longer than that of the other individual volcanoes in the Pacific.

  • PDF

Petrology and Geochemistry of Dokdo Valcanic Rocks, East Sea (독도 화산암류의 암석학적 특성과 지구화학)

  • Lee, Jong-Ik;Hur, Soon-Do;Lee, Mi-Jung;Yoo, Chan-Min;Park, Byong-Kwon;Kim, Yea-Dong;Kwon, Moon-Sang;Nagao, Keisuke
    • Ocean and Polar Research
    • /
    • v.24 no.4
    • /
    • pp.465-482
    • /
    • 2002
  • Petrological, geochemical, and geochronological studies of Dokdo volcanic rocks, East Sea, have been carried out to understand their petrogenesis. Dokdo volcanic activity is divided into three stages according to occurrences and eruption ages of rocks. The second-stage activity is accompanied by large volume of pyroclastics and lavas of intermediate composition, and occupies most of the East and West islets. K-Ar biotite and whole-rock ages indicate that Dokdo volcanic activity occurred during late Pliocene and became systematically younger toward later stages: namely, 2.7-2.4 Ma for the first-stage trachyte, 2.4-2.3Ma for the second-stage trachyandesite and 2.2-2.1 Ma for the last-stage trachyte and dikes. Dokdo volcanic rocks are of intermediate to felsic compostions, and have OIB-like alkaline nature. The geochemical similarities between Dokdo and Ulleungdo volcanic rocks suggest that they were formed from the same mantle plume. However, considering the difference of eruption ages between Dokdo (2.7-2.1 Ma) and Ulleungdo (1.4-0.01 Ma) volcanic rocks, the former seems to have been formed by earlier hot spot activity.

2-dimensional Mapping of Sulfur Dioxide and Bromine Oxide at the Sakurajima Volcano with a Ground Based Scanning Imaging Spectrograph System

  • Lee, Han-Lim;Kim, J.-Hoon;Ryu, Jae-Yong;Kwon, Soon-Chul;Noh, Young-Min;Gu, Myo-Jeong
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.204-208
    • /
    • 2010
  • A scanning imaging spectrograph system was used in this study to retrieve readings of the 2-D distribution of $SO_2$ and BrO around the crater of the Sakurajima volcano in Japan. The measurement was carried out during the daytime on November 2, 2005. Measurements were made at the surface of the site, located 5 km from the Sakurajima crater. One hundred horizontal scans were performed. Each column scanned by the system consists of 64 vertical pixels in order to retrieve the spatial distributions of BrO and $SO_2$ in the plume in terms of slant column densities (SCDs). Measured spectra were analyzed to identify and quantify $SO_2$ and BrO in the volcanic plume utilizing the plume's specific absorption features in the ultra violet region. Two-dimensional BrO and $SO_2$ distributions in SCD were retrieved horizontally covering the upwind, crater and downwind areas, and vertically, including the plume in the center of the scanned image. Both horizontal and vertical dispersions of $SO_2$ SCD from the crater were successfully measured to be from $10^{17}$ to $4.5{\times}10^{18}$ molecules $cm^{-2}$. However, BrO was measured below $10^{15}$ molecules $cm^{-2}$, which is considered its background level.

Study on the Geochemical Characteristics of the Mesozoic Volcanic Rocks in Da Hinggan Ling Area, Northeast China (중국 북동부 대흥안령 지역 중생대 화산암류에 대한 암석화학적 특성 연구)

  • Yun, Sung-Hyo;Won, Chong-Kwan;Lee, Moon-Won;Lin, Qiang
    • Journal of the Korean earth science society
    • /
    • v.21 no.1
    • /
    • pp.67-80
    • /
    • 2000
  • We studied petrological and geochemical characteristics of the Mesozoic volcanic rocks in the Da Hinggan Ling area northeast China, and discussed tectonic settings and origin of the Mesozoic volcanic rocks in northeast Asia. Volcanic rocks in Da Hinggan Ling area are composed of alkaline to subalkaline basalt-basaltic andesite-andesite-dacite-rhyolite, showing typical BAR(basalt-andesite-rhyolite) association. However, most of the volcanic rocks are basaltic and rhyolitic in composition, and andesitic rocks are relatively rare, which shows bimodal characteristics. Rb, Ba, Th and other incompatible element contents in the volcanic rocks are enriched, but the contents decrease with increasing the compatibility. REEs are fractionated and REE patterns of volcanic rocks are characterized by a high LILE/HFSE. On the tectonomagmatic discriminant diagram of Hf-Th-Nb, they fall into the fields for subduction-related destructive plate margin basalts and its differentiates. We suggest that the tectonomagmatic setting of Da Hinggan Ling area was located at the continental margin arc related with subduction environment during the Mesozoic time or may be derived from mantle plume contaminated geochemically from subducting slabs, although it is, at present within the Asia continent.

  • PDF