• Title/Summary/Keyword: volcanic activities

Search Result 120, Processing Time 0.026 seconds

INVESTIGATION OF BAIKDU-SAN VOLCANO WITH SPACE-BORNE SAR SYSTEM

  • Kim, Duk-Jin;Feng, Lanying;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.148-153
    • /
    • 1999
  • Baikdu-san was a very active volcano during the Cenozoic era and is believed to be formed in late Cenozoic era. Recently it was also reported that there was a major eruption in or around 1002 A.D. and there are evidences which indicate that it is still an active volcano and a potential volcanic hazard. Remote sensing techniques have been widely used to monitor various natural hazards, including volcanic hazards. However, during an active volcanic eruption, volcanic ash can basically cover the sky and often blocks the solar radiation preventing any use of optical sensors. Synthetic aperture radar(SAR) is an ideal tool to monitor the volcanic activities and lava flows, because the wavelength of the microwave signal is considerably longer that the average volcanic ash particle size. In this study we have utilized several sets of SAR data to evaluate the utility of the space-borne SAR system. The data sets include JERS-1(L-band) SAR, and RADARSAT(C-band) data which included both standard mode and the ScanSAR mode data sets. We also utilized several sets of auxiliary data such as local geological maps and JERS-1 OPS data. The routine preprocessing and image processing steps were applied to these data sets before any attempts of classifying and mapping surface geological features. Although we computed sigma nought ($\sigma$$^{0}$) values far the standard mode RADARSAT data, the utility of sigma nought image was minimal in this study. Application of various types of classification algorithms to identify and map several stages of volcanic flows was not very successful. Although this research is still in progress, the following preliminary conclusions could be made: (1) sigma nought (RADARSAT standard mode data) and DN (JERS-1 SAR and RADARSAT ScanSAR data) have limited usefulness for distinguishing early basalt lava flows from late trachyte flows or later trachyte flows from the old basement granitic rocks around Baikdu-san volcano, (2) surface geological structure features such as several faults and volcanic lava flow channels can easily be identified and mapped, and (3) routine application of unsupervised classification methods cannot be used for mapping any types of surface lava flow patterns.

  • PDF

A Study on Integrated Assessment of Baekdu Mountain Volcanic Aisaster risk Based on GIS (GIS기법을 이용한 백두산 화산재해 종합평가 연구)

  • Xiao-Jiao, Ni;Choi, Yun Soo;Ying, Nan
    • Spatial Information Research
    • /
    • v.22 no.4
    • /
    • pp.77-87
    • /
    • 2014
  • Recently there are many disasters caused by volcanic activities such as the eruptions in Tungurahua, Ecuador(2014) and $Eyjafjallaj\ddot{o}kull$, Iceland(2010). Therefore, it is required to prepare countermeasures for the disasters. This study analyzes the Baekdu Mountain area, where is the risky area because it is active volcano, based on the observed data and scientific methods in order to assess a risk, produce a hazard map and analyze a degree of risk caused by the volcano. Firstly, it is reviewed for the research about the Baekdu mountain volcanic eruption in 1215(${\pm}15$ years) done by Liu Ruoxin. And the factors causing volcanic disaster, environmental effects, and vulnerability of Baekdu Mountain are assessed by the dataset, which includes the earthquake monitoring data, the volcanic deformation monitoring data, the volcanic fluid geochemical monitoring data, and the socio-economic statistics data. A hazard, especially caused by a volcano, distribution map for the Baekdu Mountain Area is produced by using the assessment results, and the map is used to establish the disaster risk index system which has the four phases. The first and second phases are very high risky area when the Baekdu Mountain erupts, and the third and fourth phases are less dangerous area. The map shows that the center of mountain has the first phase and the farther area from the center has the lower phase. Also, the western of Baekdu Mountain is more vulnerable to get the risk than the eastern when the factors causing volcanic disasters are equally applied. It seems to be caused by the lower stability of the environment and the higher vulnerability.

Improvement Manual for Waterworks Facilities to Reduce the Damage of Volcanic Ash (화산재 피해 저감을 위한 상수도시설 대응매뉴얼 개선방안)

  • Yoon, Hyoung-Uk;La, Da-Hye;Lee, Gyeng-Bin;Kim, Min Gyu;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.267-276
    • /
    • 2018
  • Volcanic ash from volcanic eruptions spreads to vast areas hundreds of kilometers away, and when volcanic ash flows into surface waters, it will be damaged by water supply. In case of water supply facilities, it provides to people drinking water and domestic water, be consumed by the people cause social disorder when water supply is cut off due to damage such as water pollution caused by harmful materials of volcanic ash. However, when we looked at the disaster management manual, the establishment of a water supply facility manual to deal with the damage of volcanic ash was found to be insufficient. Therefore, in this study, the existing volcanic and water pollution related manuals were analyzed and problems were derived. In order to make quick situation judgment and response activities, we have suggested the scope of the water supply facility manual, disaster type, major missions and system of related organizations, and scenario of crisis situation by disaster type.

Analysis of Global Volcanic Activities since 2010 (2010년 이후 지구에서 발생한 화산활동 분석)

  • Yun, Sung-Hyo;Ban, Yong-Boo
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.409-419
    • /
    • 2016
  • The number of volcanoes erupted during the past ten thousand years(Holocene period) on this planet is known to stand around 1,520. Of those volcanoes, the number of active volcanoes during the six-years and seven-month period(January 2010 through the end of July 2016) is totals 209. These findings show that an average of approximate 90 volcanoes erupted every year since 2010. It is also found that over 90 percent of those active volcanoes took place in the circum-Pacific volcanic belt, which is commonly called 'Ring of Fire'. This status coincides with the distribution maps of active volcanoes on the earth: about 80 percent on subduction zone of the convergence of lithospheric plate; 15 percent on spreading zone; 5 percent on intra-plate zone. The period given in this research during 350 weeks, the following three volcanoes showed a frequency of more than 300 times eruption: Kilauea(Hawaii, USA, 338 times), Sheveluch(Kamchatka, Russia, 337 times), and Aira(Kyushu, Japan, 301 times). According to the survey conducted during the given period, there is no conspicuous increase in the frequency of volcano activities. It rather shows that volcanic eruptions took place almost evenly every year.

Geological structure and groundwater resources of Cheju and Oahu Island (제주도와 OAHU도의 지질구조 및 수자원의 특성)

  • 최순학
    • The Journal of Engineering Geology
    • /
    • v.2 no.1
    • /
    • pp.70-91
    • /
    • 1992
  • Cheju and Oahu island are similar in geology, characterized by same types of volcanic activities during the late Tertiary to the early Quaternary. The occurrence of groundwater in both islands depend on two basic elements, permeability of volcanic rocks and precipitation. However, groundwater occurrence in Oahu is much more controlled by dike complex in the regional volcanic rocks. There are two different types of groundwater in both islands. One is perched groundwater standing at any high altitude, and the other is basal groundwater developed near the coastal area. The groundwater quality of Cheju island is good in general for drinking. But many wells near the eastern coastal area are salt intruded due to over pumping activities and the area of salt water intrusion has increased landward from the year of 1970. This feature of salt water contamination is similar at Pearl Harbour in Oahu island. In order to prevent this salt water contamination into fresh groundwater reservoir on Cheju island, it is urgently asked to make groundwater flow study along the coastal area on terms of groundwater potentials and their maximum ultimate exploration.

  • PDF

Analysis of Optical Satellite Images and Pyroclastic Flow Inundation Model for Monitoring of Pyroclastic Flow Deposit Area (화성쇄설류 분출 지역의 감시를 위한 광학영상과 화성쇄설류 범람 예측 모델링 분석)

  • Cho, Minji;Lee, Saro;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.173-183
    • /
    • 2014
  • Field survey research on damages caused by volcanic activities has plenty of difficulties due to human resources, safety and costs issues. Remote sensing application using satellite image is one of very useful tools to overcome those issues. In this study, we monitored the volcanic activities of Sinabung volcano in 2010, which is located in Sumatra island, Indonesia by using Landsat 7 ETM+ satellite images acquired on 17 April, 2009 and 30 July, 2012. We found that the area of pyroclastic flow inundation after 2010 has been tripled roughly, since extracting the pyroclastic flow inundation before and after 2010 eruption from classification. The result from modeling of pyroclastic flow inundation has been compared with the extracted pyroclastic flow inundation from Landsat 7 ETM+ images. As a result, we confirmed that the length of inundation area from the modeling was calculated to 92% accurate, but the width of inundation area was somewhat imprecisely estimated in the volcanic area having the sharp slope and only calculated to 17% accurate.

TEMPORAL VARIATIONS OF IO'S MAGNETIC FOOTPRINT BRIGHTNESS

  • WANNAWICHIAN, SUWICHA;PROMFU, TATPHICHA
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.61-64
    • /
    • 2015
  • The brightness of Io's magnetic footprint, an indicator of electromagnetic interaction at the satellite, appears to be strongly connected to the satellite's distance from the plasma equator. As a result, the brightest footprints were detected when Io is near the interception location between the satellite's orbital plane and the plasma equator. However, volcanic activities on Io show strong correlation with the equatorward shift of Jupiter's main auroral oval, consequently causing the disappearance of Io's footprint. The same conclusion was suggested via the observation of Jupiter's hectometric radio emission, called HOM, which closely corresponds to Jupiter's auroral activity. The plasma environment near the Jovian satellites was found to vary significantly at different observational epochs. The electron density increased by approximately a factor of three from the Voyager epoch (1979) to the Galileo epoch (1995), while the electron density was found to be significantly higher (~ 5 times) in the Cassini epoch (2001). In this current study, the magnetic footprints were clearly brighter ten years ago (from peak brightness in 1998-2001) than the footprints detected in 2007. For volcanic activities on Io in 2007, there are two clear activities in February and late May. The magnetic footprint appeared to be dimmer in March 2007, expected to be the result of volcano activities in Feb 2007. However, the magnetic footprint brightness in June appeared to be slightly brighter than the footprints observed in May. The reason could be the time delay between the brightening of the sodium nebula on approximately May 31st and, a while later, the enhancement of flux tube content peaking on approximately June 5th. On the other hand, Io's magnetic footprints were observed during June 1st - 10th when they may not yet have been affected by the increase in mass outflow due to the increase of plasma density.

K-Ar Ages for Mesozoic Volcanic Rocks in the Geumdang Island, Jeonam, Korea (전남 금당도지역에 분포하는 중생대 화산암에 대한 K-Ar 연대)

  • Kim, Myung-Gee;Kang, Ji-Won;Kim, Cheong-Bin
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.329-335
    • /
    • 2013
  • Based on mineral assemblages, field occurrences, the volcanic rocks distributed in the Geumdang Island area are divided into three types: rhyolite, porphyritic rhyolite and intermediated dyke rock. In a diagram of [TAS (total alkali-silica)], rhyolites and porphyritic rhyolites belong to the rhyolite-dacite field and rhyolite field, respectively. As to the times when the rhyolite and porphyritic rhyolite rocks were formed a whole rock K-Ar age was obtained. These absolute age determinations have revealed that the former (rhyolite) has an age of 76-78 Ma and belongs to the Late Cretaceous (Campanian) and the latter (porphyritic rhyolite) is 71-72 Ma in age and thus belongs to the boundary between the Campanian and Maastrichtian. These geological ages are associated with the igneous activity of the Yuchon Group which occurred vigorously in the southern part of the Korean peninsula during the Late Cretaceous. The various geological ages of volcanic rocks distributed in the southwestern part of the peninsula and of igneous rocks found in the Cretaceous formation which contain a wide variety of minerals indicate that in this area, volcanic activities continued vigorously as a result of the collision of the Eurasian and Pacific Plates between 108-71 Ma.

Study of the Last Volcanic Activity on Historical Records on Jeju Island, Korea (고문헌에 기록된 제주도 최후기 화산활동에 관한 연구)

  • Ahn, Ung San
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.69-83
    • /
    • 2016
  • Radiocarbon and OSL ages of three monogenetic volcanoes inferred to be the last volcanoes on Jeju Island, Korea were determined to identify a volcano described in historical records. The results show that the ages of those volcanoes are roughly <3.8 ka (Songaksan), >4.5 ka (Biyangdo), and <6~7 ka (Ilchulbong). Though our efforts to make a positive match between historical records and volcano-chronological dating were not successful, we make a new suggestion in this paper that two historical records of volcanic activity in 1002 and 1007 A.D. could be interpreted to be the sequential volcanic events from a single monogenetic volcano. In addition, based on a volcanological reinterpretation of historical records, we infer that the volcano described therein is most likely Mt. Songaksan, in Daejeongeup, which had early phreatomagmatic and late magmatic activities after 3.8 ka ago. Furthermore, considering the geopolitical relationship between the Goryeo Dynasty and the Tamna Kingdom, in addition with the culture of the era, this study sheds new light on the possibility that there is a time gap between the actual eruptions and the historical recording of them by ancient people.

Research Trends on Mt. Baekdu Volcano - Is She Dormant or Active? - (백두산 화산 관련 연구 동향 - 휴화산/활화산 논쟁과 관련하여 -)

  • PARK, Kyeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.4
    • /
    • pp.117-131
    • /
    • 2013
  • 2010 eruption of Eyjafjallajokull volcano in Iceland and 2011 Shinmoedake's eruption in Japan evoked concerns from researchers for the possibility of explosion of Baekdusan volcano after long dormancy (repose period). National Emergency Management Administration has tried to evaluate the vulnerability of volcanic disaster and to prepare response to the potential risk and to mitigate the damages from the volcanic eruption, but a few studies have focused on the activities of Baekdusan. This study aims to clarify what the criteria between dormant volcano and active volcano based on geomorphologists' and geologists' researches. Volcanic experts have made a criterion of activeness such as the evidence of volcanic eruption within 10,000 year before present. More rigorous criterion which was made in 1991 by Japanese Meteorological Administration was 2000 years B.P. Both Baekdusan and Hallasan satisfy two criteria, so it is necessary for us to monitor the activity of both volcanoes and to reflect the facts into the curriculum.