• Title/Summary/Keyword: volatile components

Search Result 895, Processing Time 0.037 seconds

Volatile Flavor Components of Commelina communis L. as Influenced by Drying Methods (닭의장풀의 건조방법에 따른 휘발성 향기성분)

  • Lee, Mie-Soon;Choi, Hyang-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.380-386
    • /
    • 1995
  • An attempt was made to determine the effects of drying methods including shady air drying, presteamed and shady air drying, microwave drying, and freeze drying on the volatile flavor components with Commelina communis L.. Essential oils from the samples were isolated by simultaneous steam distillation-extraction(SDE) method using diethyl ether as solvent. Concentrated samples were analyzed by gas chromatography(GC) and combined gas chromatography-mass spectrometry(GC-MS). Respective 29, 47, 36, and 24 volatile flavor components were identified in shady air dried samples, presteamed and shady air dried samples, microwave dried samples, and freeze dried samples. The kinds and amounts of volatile flavor components were evidently depended upon the drying methods. 6,10,14-trimethylpentadecanone was regarded as the most abundant component in shady air dried samples, 6,10,14-trimethyl-2-pentadecanone in presteamed and shady air dried samples, neophytadiene in microwave dried samples, and ethyl acetate in freeze dried samples.

  • PDF

Volatile Flavor Components in Chinese Quince Fruits, Chaenomeles sinensis koehne (모과의 휘발성 Flavor 성분에 관한 연구)

  • Chung, Tae-Young;Cho, Dae-Sun;Song, Jae-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.176-187
    • /
    • 1988
  • Volatile flavor components in the Chinese quince fruits were trapped by simultaneous steam distillation-extraction method, and these were fractionated into the neutral, the basic, the phenolic and the acidic fraction. In the identification of carboxylic acids, the acidic fraction was methylated with diazomethane. Volatile flavor components in these fractions were analyzed by the high-resolution GC and GC-MS equipped with a fused silica capillary column. The total of one hundred and forty-five compounds from the steam volatile concentrate of the Chinese quince fruits were identified: they were 3 aliphatic hydrocarbons, 1 cyclic hydrocarbon, 4 aromatic hydrocarbons, 9 terpene hydrocarbons, 17 alcohols, 3 terpene alcohols, 6 phenols, 21 aldehydes, 7 ketones, 28 esters, 27 acids, 3 furans, 2 thiazoles, 2 acetals, 3 lactones and 9 miscellaneous ones. The greater part of the components except for carboxylic acids were identified from the neutral fraction. The neutral fraction gave a much higher yield than others and was assumed to be indispensable for the reproduction of the aroma of the Chinese quince fruits in a sensory evaluation. According to the results of the GC-sniff evaluation, 1-hexanal, cis-3-hexenal, trans-2-hexenal, 2-methyl-2-hepten-6-one, 1-hexanol, cis-3-hexenol, trans, trans-2, 4-hexadienal and trans-2-hexenol were considered to be the key compounds of grassy odor. On the other hand, esters seemed to be the main constituents of a fruity aroma in the Chinese quince fruits.

  • PDF

Volatile Flavor Components of Korean Malgundaesswuk(Artemisia Keiskeana) (한국산(韓國産) 맑은대쑥(Artemisia Keiskeana)의 휘발성 풍미성분)

  • Lee, Mie-Soon
    • Journal of the Korean Society of Food Culture
    • /
    • v.3 no.2
    • /
    • pp.207-210
    • /
    • 1988
  • Volatile components of Artemisia keiskeana, Korean wild vegetable, were collected by steam distillation. Samples were analyzed by gas chromatography(GC) and combined gas chromatography-mass spectrometry(GC-MS). Twenty nine components, including 17 hydrocarbons, 6 alcohols, 2 aldehydes, 1 oxide, and 3 furans were confirmed in this study.

  • PDF

Extraction Methods of Organic Components from Rubber Composites and Analysis of the Extract Using Gas Chromatography/Mass Spectrometry

  • Chae, Eunji;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.188-200
    • /
    • 2019
  • Rubber articles contain various organic additives such as antidegradants, curing agents, and processing aids. It is important to extract and analyze these organic additives. In this paper, various extraction methods of organic additives present in rubber composites were introduced (solvent extraction, Soxhlet extraction, headspace extraction, and solid-phase microextraction), and the extracts were characterized using gas chromatography/mass spectrometry (GC/MS). Solvent and Soxhlet extractions are easy-to-perform and commonly used methods. Efficiency of solvent extraction varies according to the type of solvent used and the extraction conditions. Soxhlet extraction requires a large volume of solvent. Headspace sampling is suitable for extracting volatile organic compounds, while solid-phase extraction is suitable for extracting specific chemicals. GC/MS is generally used for characterizing the extract of a rubber composite because most components of the extract are volatile and have low molecular weights. Identification methods of chemical structures of the components separated by GC column were also introduced.

Volatile Flavor Components in Various Varieties of Peach(Prunus persica L.) Cultivated in Korea (국내산 복숭아의 품종별 휘발성 향기성분)

  • 박은령;조정옥;김경수
    • Food Science and Preservation
    • /
    • v.6 no.2
    • /
    • pp.206-215
    • /
    • 1999
  • Volatile flavor components in five varieties, Bekdo, Chundo, Yumung, Daegubo and Hwangdo, of peach (Prunus persica L.) were extracted by SDE (Simultaneous steam distillation and extraction) method using the mixture of n-pentane and diethylether(1:1, v/v) as an extract solvent. Analysis of the concentrate by capillary gas chromatography and gas chromatography-mass spectrometry led to the identification of 83, 85, 70, 74 and 66 components in Bekdo, Chundo, Yumung, Daegubo and Hwangdo, respectively. Aroma patterns (29 alcohols, 27 ketones, 18 aldehydes, 9 esters, 5 ethers, 3 acids, 6 terpene and derivatives, and 26 miscellaneous) were identified and quantified in five cultivars. Ethyl acetate, hexanal, o-xylene, (E)-2-hexenal, hexanol, (E)-2-hexen-1-ol, benzaldehyde, r-decalactone and r-dodecalactone were the main components in each samples, though there were several differences in composition of volatile components. Beside C$\_$6/ compounds, a series of saturated and unsaturated r- and $\delta$-lactones ranging from chain length C$\_$6/ to C$\_$l2/, with concentration maxima for r-decalactone and r-dodecalactone, were a major class of constituents. Lactones and peroxidation products of unsaturated fatty acid (i.e. C$\_$6/ aldehydes and alcohols) were major constituents of the extract.

  • PDF

Volatile Components of Parsley Leaf and Seed (Petroselinum crispum) (파슬리의 잎과 씨의 휘발성 성분)

  • Kim, Young-Hoi;Kim, Kun-Soo;Hong, Chong-Ki
    • Applied Biological Chemistry
    • /
    • v.33 no.1
    • /
    • pp.62-67
    • /
    • 1990
  • The volatile oils of the fresh leaf and seed of parsley(Petroselinum crispum) were isolated by simultaneous steam distillation and extraction procedure. The compositions of the resulting oils were investigated by gas chromatography and gas chromatography-mass spectrometry. The volatile oil contents of leaf and seed were 0.06 % and 3.11 %, respectively. Fifty-eight components including 15 partially characterized components were identified in leaf oil and 23 components in seed oil. Seven of them are suggested as new parsley leaf volatiles. Terpenoids were represented as much as 46.4 % of total leaf volatiles and 49.3 % of total seed volatiles. The leaf volatiles contained a lot of myrcene(3.02%), 4-isopropenyl-1-methyl benzene(4.52%) and p-1,3,8-menthatriene(10. 49 % ), but the seed volatiles were characterized by greater quantities of the isomers, ${\alpha}-pinene$(22.28 %) and ${\beta}-pinene$(16.20 %), although these compounds were contained only trace in leaf volatiles. Of the components identified in both oils, the most abundant component was myristicin, constituting 21.80 % of the leaf volatiles and 47.54 % of the seed volatiles.

  • PDF

Volatile Flavor Components in Mash of Takju prepared by using Rhizopus japonicus Nuruks (Rhizopus japonicus 누룩으로 담금한 탁주 술덧의 발효 과정 중 휘발성 향기성분)

  • Lee, Taik-Soo;Han, Eun-Hey
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.691-698
    • /
    • 2000
  • Volatile flavor components in the mash of takjus prepared by using Rhizopus japonicus nuruk were identified by using GC and GC-MS. Twenty-four esters, 19 alcohols, 9 acids, 10 aldehydes and 4 others were found in the mash of takju. Thirty nine components including 14 esters and 12 alcohols were detected in the beginning of fermentation. Seventeen components were more detected after second day of fermentation and 66 components were detected after 12 days of fermentation. Thirty eight flavor components including 12 alcohols such as ethanol, 2-methyl-1-propanol and 3-methyl-1-butanol, 14 esters such as ethylacetate, ethylcaprylate and isoamylacetate, 6 aldehydes and 5 acids were usually detected in the fermentation process. Ethanol was predominantly found in the range of 76.2149-92.1155% as a major component by using relative peak area. 3-Methyl-1-butanol, 2-methyl-1-propanol, ethyl caprylate, 2,3-butanediol and benzeneethanol were some of the major volatile components through the fermentation. Peak area of ethylacetate, diethyl succinate, octanoic acid, acetic acid and isobutylaldehyde among the same group were higher than other component depending upon fermentation time.

  • PDF

Monitoring of the Changes in Volatile Flavor Components in Oriental Melon Wine Using SPME (SPME를 이용한 참외와인의 휘발성 향기성분의 모니터링)

  • Jo, Yong-Jun;Kim, Ok-Mi;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.20 no.2
    • /
    • pp.207-214
    • /
    • 2013
  • This study was conducted to investigate changes in the main volatile flavor components of oriental melon during the process of alcohol fermentation via SPME (solid phase micro extraction). The flavor components of oriental melon were shown to have mainly included melon and green flavors. The green flavor was identified to be nonanal, 1-butanol, 1-octen-2-ol and benzene, and its relative concentration was shown to be 16.66%. The nonanal concentration was shown to have been reduced among the green-flavor components, but no significant change in remaining components was observed. Mainly, sweet flavor tended to increase, and the relative concentration of benzene was particularly shown to have increase by 25.58%, accounting for the highest relative concentration. The amount of green-flavor components, except for 1-butanol, was shown to have significantly decrease after alcohol fermentation. Then, no component of green-flavor, which causes an offensive smell, was found during fermentation and aging. Meanwhile, the volatile flavor components, which are consist of acids, were shown to have been produced during alcohol fermentation. In particular, octanoic acid, which causes off-flavor, was shown to be 60.99%, a very high relative concentration during the aging stage. In addition, acetic acid with a pungent sour flavor tended to be produced. A further study on the improvement of flavor in the production of oriental melon wine is required.

Volatile Flavor Components in Boiled Snow Crab (Chionoecetes japonicus) and Its Concentrated Cooker Effluent

  • Park, Sung-Hee;Kim, Young-Man;Hyun, Sook-Kyung
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.2
    • /
    • pp.87-90
    • /
    • 2001
  • The volatile flavor components of snow crabs from the Young-duk coast of Korea and their concentrated cooker effluent were isolated by a modified method from Likens and Nickerson, using a simultaneous distillation and extraction apparatus. The concentrated extract was analyzed and identified by gas chromatography and GC-MS. The flavor profile of boiled crab demonstrated that the favorable flavor characteristic of crab involved a seafood-like note, and that of concentrated cooker effluent demonstrated that the weak boiled crab flavor involved a fishy note. The main flavor components of boiled crab were heterocyclic compounds including alkylpyrazines, thizoles and thiolanes, aliphatic ketones including 2-heptanone and nonanone. On the other hand, the main flavor components of cooker effluent were aldehydes including 3-methylbutanal, alipatic ketones including 2-heptanone and alkanes including 2,6,10,14-tetramethyl-pentadecane. Almost all of heterocyclic compounds, which seem to be important contributors to the flavor of boiled crab, were not identified in concentrated cooker effluent. As a result, there may be a need to add the crab flavor components formed through model experiments of Maillard reactions to the concentrated cooker effluent for human consumption.

  • PDF

Volatile Flavor Components of Buckwheat-Green Tea (메밀녹차의 향기성분)

  • Choi, Sung-Hee
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1111-1114
    • /
    • 2007
  • The volatile flavor components of buckwheat (Fagopyrum esculentum Moench)-green tea were analyzed and identified. To make tea having good flavor and functional property, parched buckwheat (50%) was mixed with green tea (50%). The extraction of volatile flavor compounds of buckwheat-green tea was accomplished by a simultaneous distillation and extraction method using a Likens and Nickerson's extraction apparatus. The concentrated extract was analyzed and identified by gas chromatography and GC-mass spectrometry. The main volatile flavor components of buckwheat-green tea were compounds that originated from parched buckwheat and the green tea. The former were 15 pyrazines having roasted and nutty aroma and methylbutanals and furfural having sweet-aroma. The latter were nerolidol, linalool, indole, ${\beta}-ionone$ and geraniol etc having flower-like odor in green tea.