• Title/Summary/Keyword: voids

Search Result 903, Processing Time 0.024 seconds

The Electric Field Analysis of 2[MVA] Mold Transformer Considering the Void Effect in the Insulating Material (2[MVA] 몰드변압기 절연물내 기포 영향을 고려한 전계해석)

  • Kim, Chang-Eob;Jeon, Mun-Ho;Lee, Suk-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.177-184
    • /
    • 2010
  • This paper presents the electric field analysis for 2[MVA] mold transformer using finite element method. The electric field was calculated for the voltage applied to the mold transformer without voids in the insulating material. Then, it was analysed the maximum electric field when the voids was in the insulating materials. And the starting voltage of partial discharge was predicted due to the voids. The effects of voids in epoxy resin on the electric field were investigated for different sizes, shapes, positions and arrangements of voids.

The Effect of Welding Condition on Tensile Properties of Friction Stir Welds of KS5J32 Al Alloy (KS5J32 Al합금 마찰교반접합부의 인장성질에 미치는 접합조건의 영향)

  • Yoon, Tae-Jin;Kim, Sang-Ju;Kim, Nam-Kyu;Song, Sang-Woo;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.82-89
    • /
    • 2011
  • The effect of welding condition on tensile properties of KS5J32 Al Alloy was investigated under various welding conditions. The 1.6 mm thick KS5J32 alloy sheets were joined by friction stir welding (FSW) technique with butt joint. The tool rotation speeds were 1000, 1250 and 1500 rpm, and the welding speeds were varied within the range from 100 to 600 mm/min. Voids mainly occurred at the advancing side of the tool probe, when the tool rotation speed was low, due to insufficient materials flow. When the weld pitch exceeded 0.4 mm/rev, voids were observed under all welding conditions and the area of voids increased with increasing weld pitch. For void-free specimens, fracture always occurred at base materials. However voids affected the location of fractures, base metal or welded zone, when the voids existed within the welds.

Reflection and propagation of plane waves at free surfaces of a rotating micropolar fibre-reinforced medium with voids

  • Anya, Augustine Igwebuike;Khan, Aftab
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.605-614
    • /
    • 2019
  • The present paper seeks to investigate propagation and reflection of waves at free surfaces of homogeneous, anisotropic and rotating micropolar fibre-reinforced medium with voids. It has been observed that, in particular when P-wave is incident on the free surface, there exist four coupled reflected plane waves traveling in the medium; quasi-longitudinal displacement (qLD) wave, quasi-transverse displacement (qTD) wave, quasi-transverse microrotational wave and a wave due to voids. Normal mode Analysis usually called harmonic solution method is adopted in concomitant with Snell's laws and appropriate boundary conditions in determination of solution to the micropolar fibre reinforced modelled problem. Amplitude ratios which correspond to reflected waves in vertical and horizontal components are presented analytically. Also, the Reflection Coefficients are presented using numerical simulated results in graphical form for a particular chosen material by the help of Mathematica software. We observed that the micropolar fibre-reinforced, voids and rotational parameters have various degrees of effects to the modulation, propagation and reflection of waves in the medium. The study would have impact to micropolar fibre-reinforecd rotational-acoustic machination fields and future works about behavior of seismic waves.

Identification of Cosmic Voids as Massive Cluster Counterparts

  • Shim, Junsup;Park, Changbom;Kim, Juhan;Hwang, Ho Seong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.48.2-48.2
    • /
    • 2020
  • We present a new void definition that connects voids with clusters, the high-density counterpart. We use a pair of ΛCDM simulations whose initial density fields are sign inverted versions to each other, and study the relation between the effective void volume and the corresponding cluster mass. Massive cluster halos (M ≥ 1013M⊙/h) are identified in one simulation at z=0 by linking dark matter particles. The corresponding void to each cluster is defined in the other simulation as the region occupied by the member particles of the cluster. We find a universal functional form of density profiles at z=0 and 1. We also find a power-law relation between the void effective radius and the corresponding cluster mass. Based on these findings, we identify cluster-counterpart voids directly from a density field without using the pair information by utilizing three parameters such as the smoothing scale, density threshold, and minimum core fraction. We identified voids corresponding to clusters more massive than M ≥ 3 × 1014M⊙/h at approximately 70-74 \% level of completeness and reliability. Our results suggest that we can detect voids comparable to clusters of a particular mass-scale.

  • PDF

Thermoelastic Properties of Porous Metals After Material Forming Processes (다공성 금속의 성형공정 후 열탄성 계수)

  • 이종원;김진원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.217-220
    • /
    • 2003
  • The effective thermoelastic properties of porous metals are discussed herein after each material forming process such as hot pressing or extrusion. The voids in metal matrix are assumed to be initially spherical in shape and to be distributed randomly. Once the porous material deforms plastically due to each material forming process, the voids change their shape from a sphere to an ellipsoid and align in one direction. Since the voids are compressible in nature, the void volume fraction is assumed to be decreasing during each material forming process.

  • PDF

Void Detection in Concrete Using Ultrasonic Image Processing Technique (초음파 화상처리기법을 이용한 콘크리트 내부공동(內部空洞)의 검출 해석)

  • 박석균;이한범;백운찬;오윤식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1303-1308
    • /
    • 2000
  • Detection of square shape voids with size 30$\times$20$\times$5cm and 20$\times$20$\times$20cm in concrete were carried out by ultrasonic image processing technique. The advantages and limitations of this technique for non-destructive inspection of square shape voids in concrete are investigated. In this study, it has been verified that the semi-direct measurement method is more effective than the other methods for detecting the voids in concrete using ultrasonic image processing method.

Rayleigh waves in nonlocal porous thermoelastic layer with Green-Lindsay model

  • Ismail Haque;Siddhartha Biswas
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.123-133
    • /
    • 2024
  • The paper deals with the propagation of Rayleigh waves in a nonlocal thermoelastic isotropic layer which is lying over a nonlocal thermoelastic isotropic half-space under the purview of Green-Lindsay model and Eringen's nonlocal elasticity in the presence of voids. The normal mode analysis is employed to the considered equations to obtain vector matrix differential equation which is then solved by eigenvalue approach. The frequency equation of Rayleigh waves is derived and different particular cases are also deduced. The effects of voids and nonlocality on different characteristics of Rayleigh waves are presented graphically.

Enhancing mechanical and durability properties of geopolymer concrete with mineral admixture

  • Jindal, Bharat Bhushan;Singhal, Dhirendra;Sharma, Sanjay;Parveen, Parveen
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.345-353
    • /
    • 2018
  • This paper approaches to improve the mechanical and durability properties of low calcium fly ash geopolymer concrete with the addition of Alccofine as a mineral admixture. The mechanical and durability performance of GPC was assessed by means of compressive strength, flexural strength, permeability, water absorption and permeable voids tests. The correlation between compressive strength and flexural strength, depth of water penetration and percentage permeable voids are also reported. Test results show that addition of Alccofine significantly improves the mechanical as well as permeation properties of low calcium fly ash geopolymer concrete. Very good correlations were noted between the depth of water penetration and compressive strength, percentage permeable voids and compressive strength as well as between compressive strength and flexural strength.

Detecting Pattern of Voids in Concrete Using Ultrasonic Image Processing Technique (초음파 화상처리기법을 이용한 콘크리트 내부공동의 형상검출에 관한 연구)

  • 박석균;이한범;오윤식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.783-788
    • /
    • 2001
  • Voids created with concrete construction or deterioration result in serious weakness from the aspects of both structural and durable function. Ultrasonic method using image processing technique was used for detecting pattern of voids in concrete in this study Experimental investigation was carried out for three types(patterns) of void in concrete. The effect of curing period of concrete and ultrasonic measurement method was also investigated. As a result it has been verified that the semi-direct measurement method is more effective than the other methods for detecting pattern of voids in concrete in ultrasonic method using image processing technique. The longer the curing period of concrete is, the better the detection accuracy of void pattern can be obtained.

  • PDF

Three-Dimensional Modeling of Void Formation During Resin Transfer Molding (RESIN TRANSFER MOLDING 공정에서의 기공 형성에 관한 3차원 모델링)

  • Bae, Jun-Ho;Kang, Moon-Koo;Lim, Seoug-Taek;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.246-250
    • /
    • 2001
  • In resin transfer molding (RTM), resin is forced to flow through the fiber perform of inhomogeneous permeability. This inhomogeneity is responsible for the mismatch of resin velocity within and between the fiber tows. The capillary pressure of the fiber tows exacerbates the spatial variation of the resin velocity. The resulting microscopic perturbations of resin velocity at the flow front allow numerous air voids to form. In this study, a mathematical model was developed to predict the formation and migration of micro-voids during resin transfer molding. A transport equation was employed to account for the migration of voids between fiber tows. Incorporating the proposed model into a resin flow simulator, the volumetric content of micro-voids in the preform could be obtained during the simulation of resin impregnation.

  • PDF