• Title/Summary/Keyword: vital gluten

Search Result 25, Processing Time 0.025 seconds

Ootimization of Mekium Components for Lactic Acid Production (젖산 생산을 위한 배지 최적화)

  • Cho, Yun-Kyung;Cho, Kyu-Hong;Hong, Seung-Suh;Lee, Hyun-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.1
    • /
    • pp.12-16
    • /
    • 1995
  • Medium components for lactic acid production were optimized with a strain of Lactobacillus sp., isolated by our Lab. Nitrogen source was the key component and manganese ion was also important for lactic acid production in this strain. Optimal concentration of manganese ion was 0.03 g/l as MnSO$_{4}$ 4 - 5 H$_{2}$O base. Other mineral elements, however, had little effect on it. Among the nitrogen sources we examined, yeast extract showed the highest productivity. Yeast extract, the exellent but very expensive medium component, could be partially replaced by soytone until 60% dry base with higher productivity, or by tryptone enforced with vitamines and nucleic acids. In order to replace yeast extract completely, we examined several inexpensive nitrogen sources and their enzymatic hydrolyzates. The hydrolyzate of vital wheat gluten was the best of them.

  • PDF

A Study on the Quality Improvement of Bread Using the Whole Waxy Sorghum Flours Prepared with Different Milling Methods (분쇄방법을 달리한 통곡 찰수수가루를 이용한 수수빵의 제조 및 품질 개선)

  • Ryu, Bog-Mi;Kim, Chang-Soon
    • Korean journal of food and cookery science
    • /
    • v.30 no.3
    • /
    • pp.262-270
    • /
    • 2014
  • This study was conducted in order to investigate the properties of bread making and quality improvement when wheat flour is replaced with whole waxy sorghum flour. Sorghum flour, which was prepared with two types of milling methods of pin mill and ultra fine pulverization, was used at different levels ranging from 10, 20 and 30%, respectively. The pasting properties of peak viscosity, setback viscosity and pasting temperature of the composite flour containing pin-milled sorghum flour were higher than those of ultra fine pulverized sorghum flour. The volumes of sorghum bread were lower than that of wheat bread; moreover, they gradually decreased with increasing amounts of sorghum flour, which has inferior dough properties and therefore collapses in the oven. The use of vital gluten (12% based on sorghum flour weight) and emulsifier (SSL; sodium stearoyl lactylate) increased the extensibility and resistance to the extension of the dough, thereby improving its rheological properties. Thus, the oven spring of bread containing sorghum was improved, demonstrating as loaf volume increase up to 15%. However, in the case of breads containing 30% sorghum flour, the loaf volumes were still unacceptably low. Therefore, the formula and the bread making process were further modified as follows: An increase of vital gluten ($12%{\rightarrow}18%$) and shortening ($3%{\rightarrow}6%$), a decrease of mixing time and dough fermentation temperature, and the addition of sorghum flour after gluten development during mixing. The above modifications resulted in the improvement of sorghum bread quality. Therefore, we suggest that pin-milled sorghum flour is more appropriate than ultra fine pulverized sorghum flour for making bread.

Quality Attributes of Bread with Soybean Milk Residue-Wheat Flour (비지가루 첨가 식빵의 품질 특성)

  • 신두호;이연화
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.4
    • /
    • pp.314-320
    • /
    • 2002
  • When the soybean milk residue flour were added to the respective wheat flour at level of 5%, 10% and 15% the possibility of bread making were studied. Vital gluten was added to the soybean milk residue portion of a 10% composite flour at levels of 3%, 6% and 9% to improve bread quality. And test was baking properties of soybean milk residue composite flour and sensory evaluation of composite breads. Major components of soybean milk residue flour were crude protein, 22.0%; crude lipid, 13.2%; carbohydrate, 54.3%; and dietary fiber, 27.2%. When 5%, 10% and 15% soybean milk residue flour was blended with wheat flour, water absorption, development time and bread weight were increased, and volume of dough and loaf was decreased. But improved bread-making properties by adding gluten. Color of crumb got darker as the percentage of soybean milk residue flour increased, got brighter when gluten was added. Texture of bread increased in chewiness and hardness as the percentage soybean milk residue flour increased but not different in cohesiveness. The use of vital gluten showed influence to springiness, chewiness and hardness. The sensory evaluation showed that 5% soybean milk residue-wheat bread was similar to bread made from wheat flour in overall acceptability. And the bread made by miting gluten were better than 10% soybean milk residue-wheat bread in overall acceptability.

The Effect of Vital Gluten and Gum on the Retrogradation of Breads Made with Korean Wheat Flour and Sprouted Brown Rice (활성 글루텐 및 검질 첨가에 따른 발아 현미 첨가 우리밀 식빵의 노화 특성)

  • Kim, Sun-Kyung;Lee, Seung-Joo;Yoon, Jang-Ho;Lee, Seung-Ju
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.3
    • /
    • pp.384-390
    • /
    • 2008
  • This study examined the effects of sprouted brown rice (SR), gluten (G), and hydroxypropyl-methyl-cellulose (H) on the suppression of retrogradation in breads made with Korean wheat flour. An amylograph was used to determined the pasting properties of dough samples made with Korean wheat flour and additions of SR, SR+G, SR+H, and SR+G+H, respectively. In addition, a texture analyzer was employed to measure the hardness changes of bread samples left at room temperature for 72 hours. Finally, the type of retrogradation was calculated by the Avrami equation. The results showed that the addition of SR significantly decreased dough viscosity. However, the dough samples containing SR, G, and H all displayed reduced cold paste viscosity and setback, indicating a suppression of staling. The bread samples containing SR added to Korean wheat flour had increased hardness, but the addition of gluten (SR+G) reduced hardness. Upon examining the bread samples stored at room temperature for 24 hours, it was shown that the addition of G and H with SR (SR+G+H) suppressed retrogradation. Finally, the Avrami model data indicated that the type of retrogradation varied according to the addition of SR, G, and H. The breads made with hard wheat flour (HWF), WM, and WM+SR+H had similar Avrami exponents ($1.20{\sim}1.28$), while those for WM+SR, WM+SR+G, and WM+SR+G+H ranged from 2.7 to 3.3. Overall, the combined addition of SR and H was considered effective for preventing retrogradation in bread made with Korean wheat flour.

  • PDF

Suitable Dough Formula for Yeast-Raised Breadmaking Using Frozen Dough (냉동(冷凍)반죽을 이용(利用)한 발효(醱酵)빵 제조(製造)에 있어서 적정(適正)반죽의 조성(組成))

  • Suh, Seok Chool;Bang, Kwang Woong;Song, Hyung Ik;Chung, Ki Taek
    • Current Research on Agriculture and Life Sciences
    • /
    • v.6
    • /
    • pp.137-143
    • /
    • 1988
  • We studied suitable dough formula for yeast-raised breadmaking using frozen dough prepared by straight no-time method, centering around breadmaking quality. The most suitable dough formula based on 1,000 g of wheat flours was as follows : compressed yeast ; 30 g, sucrose ; 50 g, salt ; 20 g, shortening ; 40 g, potassium bromate ; 75mg, L-ascorbic acid ; 200mg, yeast food ; 3 g, vital wheat gluten ; 30 g, calcium phosphate, monobasic ; 400mg, sodium stearoyl-2-lactylate ; 8 g, water ; 680 g. Breadmaking test employing this formula showed that gassing power and fermentation time were suitable and higher specific loaf volume was obtainable. By using much emulsifiers and dough conditioners, frozen injury of dough was controlable in spite of the addition of more content of water(68%) than that of water (62%) obtained from the farinograph data.

  • PDF

The Effect of Heat Treatment on Fried Noodle Making (밀의 열처리가 라면 제조과정 및 물성에 미치는 영향)

  • Wan Soo Kim
    • Korean journal of food and cookery science
    • /
    • v.9 no.1
    • /
    • pp.14-18
    • /
    • 1993
  • $95^{\circ}C$에서 열처리한 밀가루(Kansas hard white winter wheat flour)로 제조된 라면은 그 제조시 약 38%의 물 흡수율을 보여주었는데 이는 열처리를 안 한 control 밀가루에 비하여 약 4~5% 증가함을 보여주었다. $95^{\circ}C$에서 열처리한 밀가루는 글루텐이 열에 의해 응고되어 대부분 손상되었으며 $\alpha$-amylase의 양이 거의 없는 것으로 나타났다. 한편 라면의 가열 전후를 볼 때, 육안으로 본 라면의 색은 상당히 좋아졌는데, 이는 polyphenol oxidase의 불활성화로 인한 것이며, 조리시간도 많이 단축되었다. 조리 후의 라면의 증가된 무게는 control에 비하여 감소하였고, 조리에 의한 손실은 증가하였는데 이는 열에 의해 글루텐 단백질이 응고되거나 손상을 입어 라면 조직의 텍스쳐가 약해졌기 때문이다. 그러므로 열처리를 한 밀가루로부터 라면을 제조시는, 손상되지 않은 천연의 글루텐(vital gluten)을 첨가하면 국수의 글루텐 단백질과 전분의 결합력을 증가시켜 라면조직을 향상시킬 것으로 보여진다.

  • PDF

Studies on Baking Properties of Korean Wheat (韓國産 小麥의 製빵 適性에 關한 硏究)

  • Lim, Yoon-Hee;Noh, Wan-Seob
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.7 no.2
    • /
    • pp.167-173
    • /
    • 1997
  • The primary objective of this study was tested the baking properties of Korean wheat. In test results, the wheat which was harvested from all over the Korea, not suitable for making bread and cake products. However, some of possibilities to make bread were found by using vital gluten as well as additives. Out of Korean wheat classes, the Tapdong wheat showed good properties for bread making, and it is recommended to develope it as bread making wheat by segregating from other classes in seeding and harvesting.

  • PDF

Effect of particle size of rice flour on popping rice bread (쌀가루 입도가 쌀 식빵의 팽화에 미치는 영향)

  • Park, Mi-Kyung;Kang, Soon-Ah;Lee, Kyung-Hee
    • Korean journal of food and cookery science
    • /
    • v.22 no.4 s.94
    • /
    • pp.419-427
    • /
    • 2006
  • The purpose of this study is to promote the substitution of rice flour for wheat flour in making bread and thus the consumption of rice by examining the effect of particle size of rice flour on leavening rice bread. For this purpose, several experiments were carried out. With regard to particle size distribution, 59.45% of wheat flour had passed 200 mesh and 3 kinds of rice flour milled to penetrate into 20, 35, and 45 mesh (S1, S2 and S3) had passed 21.88%, 33.1% and 36.38% of those for 200 mesh, respectively. To leaven the rice flour dough to bread, 25% of vital gluten was needed. To determine the optimal water quantity for rice bread dough, the hardness of wheat and rice flour dough was measured by rheometer. The appropriate water quantity for S1, S2 and S3 was set at 285 ml , 295 ml and 335${\sim}$340m1, respectively. The loaf volume index of the wheat flour bread was 6.24, while that of and rice flour bread S1, S2 and S3 was 5.38, 5.50 and 5.75, respectively. These results indicated that the loaf volume index of rice flour bread is lower than that of wheat flour bread, but that the volume of rice flour bread was increased with fuel particle size of rice flour. Scanning electron microscopy (SEM), image of the wheat bread tissue at a magnification of 35 times showed long, large, oval-shaped, air cells and thin cell membrane, as well as small air cells, whereas the images of rice flour showed angular, circular, air cells and rough and thick cell membrane. The size and number of air cells in the rice bread were larger in S2 and S3 with fuel particle flours than in S1. In particular, the bread made with S3 contained many air cells that were as large as those in the wheat bread were. In addition, when the inner cell wall was magnified 1500 times, almost no small air cell was observed in C and S3, whereas many fine air cells were observed in the cell wall of S1 and S2.

Qualify and Stability of Fish Sauce during Storage (어장유의 품질과 저장안정성)

  • KIM Byeong-Sam;PARK Sang-Min;CHOI Soo-Il;KIM Chang-Yang;HAN Bong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.1
    • /
    • pp.20-26
    • /
    • 1986
  • Very little information is available in the literature on storage of fish sauce. Therefore, microbiological and chemical chracteristics during storage and quality of fish sauce were investigated and discussed to present data about the optimum storage condition. The chopped sardine meat was mixed with equal amount of water and $9\%$(w/w) of $75\%$ vital wheat gluten and then hydrolyzed by addition of commercial proteolytic enzymes such as bromelain, papaya protease, ficin and a enzyme mixture (Pacific Chem. Co.) for 4 hours at $52.5^{\circ}C$. The reaction mixture was heated for 30 min at $100^{\circ}C$ for enzyme inactivation, pasteurization and color development and then centrifuged for 20 min at 4,000 rpm. Table salt and benzoic acid were added for bacteriostatic effect and stored for 80 days at $15{\pm}1^{\circ}C$ and $30{\pm}1^{\circ}C$. The results were summarized as follows: 1. The amount of amino-nitrogen and pH of fish sauce were almost unchanged during storage. 2. Mininum concentration of salt for bacteriostatic activity was $9\%$(w/w) regardless of addition of benzoic acid. 3. the yields of amino-nitrogen were $63.1\%$ for the hydrolysate prepared without enzyme, $79.7\%$ for that with bromelain, $69.9\%$ with ficin, $74.3\%$ with papaya pretense, and $78.1\%$ with enzyme mixture, respectively. 4. The contents of amino-nitrogen were $4510.0mg\%$ on the dry basis for the product prepared by autolysis, $5483.2mg\%$ for that prepared with bromelain, $5305.7mg\%$ with ficin, $4994.1mg\%$ with papaya protease and $5582.3mg\%$ with the enzyme mixture, respectively. 5. The contents of crude protein were $51.35\%$ on the dry basis for the product prepared by autolysis and 55 to $59\%$ for prepared with commercial enzymes. 6. The hydrolysate prepared with the enzyme mixture revealed a little stronger meaty taste than any other products. 7. The level of crude protein in residues was still high ($69.5{\sim}77.2\%$ on the dry basis) and might be originated from the added vital wheat gluten.

  • PDF

Effect of the Addition of Non-meat Proteins on the Quality of the Restructured Pork Product (비육단백질 대체가 재구성 돈육 품질에 미치는 영향)

  • Lee, Moo-Ha;Chung, Myung-Sub;Jin, Sang-Keum
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.257-262
    • /
    • 1987
  • The effects of the substitution of non-meat proteins (Isolated Soy protein, Vital Wheat Gluten, Sodium Caseinate) for pork were evaluated at 0, 10, 20 and 30% levels of pork weight in the restructured product. The increase of the substitution level led to a significant increase in pH but a decrease in cooking loss, whereas it brought only a slight negative effect on color of products. TBA values for all treatments containing non-meat proteins were lower than or similar to the value for control Also, increased levels of non-meat proteins improved or did not affect functional properties of products. Alt three non-meat proteins appeared to be acceptable in terms of physico-chemical and sensory properties up to 20% of the replacement with pork in the restructured product.

  • PDF