• Title/Summary/Keyword: visual modeling

Search Result 485, Processing Time 0.034 seconds

Development of a Simulator and Dynamic Modeling for Moving Capability Estimation of Track Vehicle (궤도 차량의 기동성능 예측을 위한 동적 모델링 및 시뮬레이터 개발)

  • 김종수;한성현;김용태;이경식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.305-305
    • /
    • 2000
  • In this paper, we developed a Windows 98 version off-line programming system which can simulate a track vehicle model in 3D graphics space. The track vehicle was adopted as an objective model. The interface between users and the off-line program system in the Windows 98's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D Graphics.

  • PDF

A study on the application of modified hydraulic conductivity to consider turbid water for open-cut riverbed infiltration process: numerical modeling approach (개착식 하상여과에서 탁수를 고려한 수정 투수계수 적용 연구: 수치모델링을 통한 접근)

  • Yang, Jeong-Seok;Kim, Il-Hwan;Jeong, Jae-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.741-748
    • /
    • 2016
  • Laboratory scale model was constructed for open-cut riverbed infiltration experiment and four kinds of media were selected, medium sand, sand, volcanic rock, and gravel, for the experiment. Hydraulic conductivity for each medium and flow rate from the collecting pipe with functional screen were estimated from the experiment. Modified hydraulic conductivity scenarios considering turbid water (30~50 NTU) were applied in Visual MODFLOW modeling to analyze the effects of turbid water on the flow rate. Twenty-two scenarios were generated considering prticles in turbid water and applied to each medium cases in MODFLOW modeling. The minimum error was occurred when the gravel medium had 20% less hydraulic conductivities for the third layer-depth from the top and clay particles in turbid water might play a role in adsorption process to the surface of volcanic rock (2~5 mm). For medium sand case the error was also quite small when the mediumhas 5% less hydraulic conductivities for the second layer-depth from the top.

A Visual Servo Algorithm for Underwater Docking of an Autonomous Underwater Vehicle (AUV) (자율무인잠수정의 수중 도킹을 위한 비쥬얼 서보 제어 알고리즘)

  • 이판묵;전봉환;이종무
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Autonomous underwater vehicles (AUVs) are unmanned, underwater vessels that are used to investigate sea environments in the study of oceanography. Docking systems are required to increase the capability of the AUVs, to recharge the batteries, and to transmit data in real time for specific underwater works, such as repented jobs at sea bed. This paper presents a visual :em control system used to dock an AUV into an underwater station. A camera mounted at the now center of the AUV is used to guide the AUV into dock. To create the visual servo control system, this paper derives an optical flow model of a camera, where the projected motions of the image plane are described with the rotational and translational velocities of the AUV. This paper combines the optical flow equation of the camera with the AUVs equation of motion, and deriver a state equation for the visual servo AUV. Further, this paper proposes a discrete-time MIMO controller, minimizing a cost function. The control inputs of the AUV are automatically generated with the projected target position on the CCD plane of the camera and with the AUVs motion. To demonstrate the effectiveness of the modeling and the control law of the visual servo AUV simulations on docking the AUV to a target station are performed with the 6-dof nonlinear equations of REMUS AUV and a CCD camera.

A Bio-Inspired Modeling of Visual Information Processing for Action Recognition (생체 기반 시각정보처리 동작인식 모델링)

  • Kim, JinOk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.299-308
    • /
    • 2014
  • Various literatures related computing of information processing have been recently shown the researches inspired from the remarkably excellent human capabilities which recognize and categorize very complex visual patterns such as body motions and facial expressions. Applied from human's outstanding ability of perception, the classification function of visual sequences without context information is specially crucial task for computer vision to understand both the coding and the retrieval of spatio-temporal patterns. This paper presents a biological process based action recognition model of computer vision, which is inspired from visual information processing of human brain for action recognition of visual sequences. Proposed model employs the structure of neural fields of bio-inspired visual perception on detecting motion sequences and discriminating visual patterns in human brain. Experimental results show that proposed recognition model takes not only into account several biological properties of visual information processing, but also is tolerant of time-warping. Furthermore, the model allows robust temporal evolution of classification compared to researches of action recognition. Presented model contributes to implement bio-inspired visual processing system such as intelligent robot agent, etc.

Numerically Analytical Design of An Orifice Fluid Damper (오리피스 유체댐퍼의 수치해석적 설계)

  • 이재천;김성훈;문석준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.105-112
    • /
    • 2003
  • This paper presents the numerical design technology of a passive orifice fluid damper system especially for the characteristics between the damper piston velocity and the damping force. Numerical analysis with the visual interfacial modeling technique was applied into the analysis of the damper system's dynamics. A prototype orifice fluid damper was manufactured and experimentally tested to validate the numerical simulation results. The performances of various damper system schemes were investigated based on the verified numerical simulation model of orifice fluid damper.

Analysis and description of the Visual Image Structure of Lemon Juice Squeezer, designed for Italy ALESSI company by Philippe Starck (필립 스탁의 디자인작 '레몬즙 짜개(Lemon Juice Squeezer)'에 대한 시각형상 구조 분석과 기술)

  • 조성근
    • Archives of design research
    • /
    • v.16 no.2
    • /
    • pp.405-414
    • /
    • 2003
  • The modeling analysis for objects placed in a given space can be described objectively when their visual image structure is grasped. It can't be answered without first analyzing the basic program, visual expression. And when the whole aspect of the visual image of the desired interior utensils is presented, the mindset of its designer can be deduced from that. Therefore, the study was based on the lemon juice squeezer, one of the interior kitchen utensils that Philippe Starck designed for Italy ALESSI company. For the study method, putting'The Elements of Dynamic Symmetry' by Prof. Jay Hambidge into practice, 'paradigm' analysis containing the whole'lemon juice squeezer'image was attempted. And to describe it, the visual mark description method by Prof. Bok-Young Kim was used. In conclusion, henceforth, the relationship between interior space and articles, the relationship between object and user, the modeling critique or analysis of the production itself shoud not be intended to be emotional. On the contrary, the study presented an art analyic methodology that can analyze and describe the visual image structure numerically, and confirm the relationship between form and content.

  • PDF

Development of GIS Application Component for Supporting Administration Business of Local Government (지자체 행정업무 지원을위한 GIS 응용 컴포넌트 개발 : 토지 민원서비스 컴포넌트)

  • 서창완;김태현;이덕호;김일석
    • Spatial Information Research
    • /
    • v.8 no.1
    • /
    • pp.15-29
    • /
    • 2000
  • In the Recent rapidly changing technology environment the computerization of administration business which is driven or will be driven to give improved information services to people by local government or central government with a huge budget. The possibility of applying GIS application component to the computerization of administration business is investigated to prevent local government from investing redundant money and to reuse the existing investment at this point of time. Land civil service application component was developed at the $\ulcorner Development of Open GIS Component S/W \lrcorner$ project which was managed by Ministry of Information and Communication . GIS application component was based on Open GIS OLE/COM specification for development of standard interface and USD(Unified System Development ) for development method and UML (Unified Modeling Language) for system design and Visual C++ for component implementation. Implemented components were Process Control, Map, Print, Statistics component and were verified by using Visual Basic and Delhi. tis study shows that the development of component is very useful at the GIS application development for local governments. But the standard of business and data and system is the essential prerequisite to maximize business application.

  • PDF

GTS-Visual Logic: Visual Logic and Tool for Analysis and Verification of Secure Requirements in Smart IoT Systems (GTS-VL: 스마트 IoT에서 안전 요구사항 분석과 검증을 위한 시각화 논리 언어 및 도구)

  • Lee, SungHyeon;Lee, MoonKun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.289-304
    • /
    • 2022
  • It is necessary to apply process algebra and logic in order to analyze and verify safety requirements for Smart IoT Systems due to distributivity and mobility of the systems over some predefined geo-temporal space. However the analysis and verification cannot be fully intuitive over the space due to the fact that the existing process algebra and logic are very limited to express the distributivity and the mobility. In order to overcome the limitations, the paper presents a new logic, namely for GTS-VL (Geo-Temporal Space-Visual Logic), visualization of the analysis and verification over the space. GTS-VL is the first order logic that deals with relations among the different types of blocks over the space, which is the graph that visualizes the system behaviors specified with the existing dTP-Calculus. A tool, called SAVE, was developed over the ADOxx Meta-Modeling Platform in order to demonstrate the feasibility of the approach, and the advantages and practicality of the approach was shown with the comparative analysis of PBC (Producer-Buffer-Consumer) example between the graphical analysis and verification method over the textual method with SAVE tool.

Development of Automatic Gear Modeling Module Using Computer Aided Design(CAD) (컴퓨터응용설계(CAD)를 이용한 기어모델링 자동화 모듈 개발)

  • Kim, Dae-Ho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.803-808
    • /
    • 2018
  • Combining digital automation solutions throughout recent manufacturing process is essential. Advanced robot and mechanical techniques are required for design, manufacture, and distribution process. Manual design of repetitive similar mechanical components during the development phase of these advanced machines and robots can occur wasting time and money. Developed gear design module, which is the power transfer system mechanical component, was programmed in the Visual Basic language in CATIA V5 environment. Automation Process is Based on Parametric Modeling Method. and it was found to be effective in reducing design time compared to designers manual modeling.

Measuring Visual Attention Processing of Virtual Environment Using Eye-Fixation Information

  • Kim, Jong Ha;Kim, Ju Yeon
    • Architectural research
    • /
    • v.22 no.4
    • /
    • pp.155-162
    • /
    • 2020
  • Numerous scholars have explored the modeling, control, and optimization of energy systems in buildings, offering new insights about technology and environments that can advance industry innovation. Eye trackers deliver objective eye-gaze data about visual and attentional processes. Due to its flexibility, accuracy, and efficiency in research, eye tracking has a control scheme that makes measuring rapid eye movement in three-dimensional space possible (e.g., virtual reality, augmented reality). Because eye movement is an effective modality for digital interaction with a virtual environment, tracking how users scan a visual field and fix on various digital objects can help designers optimize building environments and materials. Although several scholars have conducted Virtual Reality studies in three-dimensional space, scholars have not agreed on a consistent way to analyze eye tracking data. We conducted eye tracking experiments using objects in three-dimensional space to find an objective way to process quantitative visual data. By applying a 12 × 12 grid framework for eye tracking analysis, we investigated how people gazed at objects in a virtual space wearing a headmounted display. The findings provide an empirical base for a standardized protocol for analyzing eye tracking data in the context of virtual environments.