• Title/Summary/Keyword: visual estimation method

Search Result 256, Processing Time 0.03 seconds

Construction of a Verified Virtual NC Simulator for the Cutting Machines at Shipyard Using the Digital Manufacturing Technology (디지털 매뉴팩쳐링 기법을 이용한 절단기기의 검증된 가상 NC 시뮬레이터 구축)

  • Jung, Ho-Rim;Yim, Hyun-June;Lee, Jang-Hyun;Choi, Yang-Ryul;Kim, Ho-Gu;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.1 s.139
    • /
    • pp.64-72
    • /
    • 2005
  • Digital manufacturing is a technology to simulate the real manufacturing process using the virtual model representing the physical schema and the behavior of the real manufacturing system including resources, processes and product information. Therefore, it can optimize the manufacturing system or prevent the bottleneck processes through the simulation before the manufacturing plan is executed. This study presents a method to apply the digital manufacturing technology for the steel cutting process in shipyard. The system modeling of cutting shop is carried out using the IDEF and UML which is a visual modeling language to document the artifacts of a complex system. Also, virtual NC simulators of the cutting machines are constructed to emulate the real operation of cutting machines and NC codes. The simulators are able to verify the cutting shape and estimate the precise cycle time of the planned NC codes. The validity of the virtual model is checked by comparing the real cutting time and shape with the simulated results. It is expected that the virtual NC simulators can be used for accurate estimation of the cutting time and shape in advance of real cutting work.

The Feasibility of Event-Related Functional Magnetic Resonance Imaging of Power Hand Grip Task for Studying the Motor System in Normal Volunteers; Comparison with Finger Tapping Task

  • Song, In-Chan;Chang, Kee-Hyun;Han, Moon-Hee
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.111-111
    • /
    • 2001
  • 목적: To evaluate the feasibility of the event-related functional MR study using power grip studying the hand motor system 대상 및 방법: Event-related functional MRI was performed on a 1.5T MR unit in seven norm volunteers (man=7, right-handedness=2, left-handedness=5, mean age: 25 years). A single-shot GRE-EPI sequence (TR/TE/flip angle: 1000ms/40ms/90, FOV = 240 mm matrix= 64$\times$64, slice thickness/gap = 5mm/0mm, 7 true axial slices) was used for functiona MR images. A flow-sensitive conventional gradient echo sequence (TR/TE/flip angl 50ms/4ms/60) was used for high-resolution anatomical images. To minimize the gross hea motion, neck-holders (MJ-200, USA) were used. A series of MR images were obtained in axial planes covering motor areas. To exclude motion-corrupted images, all MR images wer surveyed in a movie procedure and evaluated using the estimation of center of mass of ima signal intensities. Power grip task consisted of the powerful grip of all right fingers and hand movement ta used very fast right finger tapping at a speed of 3 per 1 second. All tasks were visual-guid by LCD projector (SHARP, Japan). Two tasks consisted of 134 phases including 7 activatio and 8 rest periods. Active stimulations were performed during 2 seconds and rest period were 15 seconds and total scan time per one task was 2 min 14 sec. Statistical maps we obtained using cross-correlation method. Reference vector was time-shifted by 4 seconds an Gaussian convolution with a FWHM of 4 seconds was applied to it. The threshold in p val for the activation sites was set to be 0.001. All mapping procedures were peformed usin homemade program an IDL (Research Systems Inc., USA) platform. We evaluated the activation patterns of the motor system of power grip compared to hand movement in t event-related functional MRI.

  • PDF

Statistical Analysis on Application of External Solar Shading Devices (외부 차양장치의 적용실태에 관한 통계적 분석)

  • Kim, Hyo-Jung;Lee, Chul-Sung;Yoon, Jong-Ho
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.65-71
    • /
    • 2016
  • Purpose : The solar shading device carries out roles in a reduction of the cooling load and an improvement of the thermal comfort of occupants by adjusting incident solar radiation. In addition, The shading device enhances the visual sensation comfort by controlling the optical properties. In order to improve building performance and comfort of occupancy, interests in application of the shading devices are getting increasing. This study investigated the application and effectiveness of the external shading device design using statistical analysis. The outcome of this paper could be utilized for the realization of status quo and for an estimation of effectiveness of the shading device Method : The period of data gathering was between 2003 and 2014 and total 459 cases of practical building project were investigated. Firstly, this study defined qualification of the shading devices; the shading device should have minimum protruding lengths of 150mm to outside and have the function of shading control. This paper investigated application rate of the shading device in real project, regional rate of application, annual change of application, materials and types. Result : The statistical analysis showed that the application rate of shading devices was 25.7% in total 459 building design projects. The application rate in central and southern region was 25.3% and 27.0% respectively. Meanwhile, Jeju region showed 22.2%, which was the lowest rate although this area needs more shading devices. The application number of the shading device was the smallest in 2007, but the rate gradually increased after that. The applications was the largest in 2014 due to growing interest of the shading devices in the building.

Feasibility of Using Digital Pictures to Examine Individuals Nutrient Intakes from School Lunch: A Pilot Study (디지털 사진을 이용한 점심급식의 영양소 섭취량 분석: 예비조사)

  • Jung, Hyun-Hye;Yoon, Ji-Hyun;Choi, Kyung-Suk;Chung, Sang-Jin
    • Journal of the Korean Dietetic Association
    • /
    • v.15 no.3
    • /
    • pp.278-285
    • /
    • 2009
  • The purpose of this pilot study was to examine the feasibility of using digital pictures to assess individuals' nutrient intakes from school lunch. The subjects for the study were 29 male students and 40 female students from two classes in a middle school located in Daejeon Metropolitan City, Korea. The school lunch service was self-operated and the students were allowed to portion the foods by themselves. The teacher in charge of each class took digital pictures of every student's lunch plate that was tagged with an i.d. number, before and after eating for two consecutive days. The researchers estimated the amount of food, which an individual actually consumed by comparing pre- and post-pictures of their plate with reference food pictures for better visual estimation of the food amounts. Individual energy and nutrient intakes were calculated using CAN-Pro (ver 3.0) using the food intake data visually estimated from the digital pictures and school lunch recipes. The teachers in charge reported that about 10~15 additional minutes were needed to take the pictures used for the study and this additional time did not place much burden on the service process during the lunch period. The results showed that the students' actual energy and nutrient intakes from the same school lunch menus were quite varied as the serving portions were not regulated and left-overs were not prohibited. This pilot study suggests that examination of individual nutrient intake using digital picture is a feasible method in the context of school lunch service.

  • PDF

Investigation of image preprocessing and face covering influences on motion recognition by a 2D human pose estimation algorithm (모션 인식을 위한 2D 자세 추정 알고리듬의 이미지 전처리 및 얼굴 가림에 대한 영향도 분석)

  • Noh, Eunsol;Yi, Sarang;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.285-291
    • /
    • 2020
  • In manufacturing, humans are being replaced with robots, but expert skills remain difficult to convert to data, making them difficult to apply to industrial robots. One method is by visual motion recognition, but physical features may be judged differently depending on the image data. This study aimed to improve the accuracy of vision methods for estimating the posture of humans. Three OpenPose vision models were applied: MPII, COCO, and COCO+foot. To identify the effects of face-covering accessories and image preprocessing on the Convolutional Neural Network (CNN) structure, the presence/non-presence of accessories, image size, and filtering were set as the parameters affecting the identification of a human's posture. For each parameter, image data were applied to the three models, and the errors between the actual and predicted values, as well as the percentage correct keypoints (PCK), were calculated. The COCO+foot model showed the lowest sensitivity to all three parameters. A <50% (from 3024×4032 to 1512×2016 pixels) reduction in image size was considered acceptable. Emboss filtering, in combination with MPII, provided the best results (reduced error of <60 pixels).

An Acoustic Event Detection Method in Tunnels Using Non-negative Tensor Factorization and Hidden Markov Model (비음수 텐서 분해와 은닉 마코프 모델을 이용한 터널 환경에서의 음향 사고 검지 방법)

  • Kim, Nam Kyun;Jeon, Kwang Myung;Kim, Hong Kook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.9
    • /
    • pp.265-273
    • /
    • 2018
  • In this paper, we propose an acoustic event detection method in tunnels using non-negative tensor factorization (NTF) and hidden Markov model (HMM) applied to multi-channel audio signals. Incidents in tunnel are inherent to the system and occur unavoidably with known probability. Incidents can easily happen minor accidents and extend right through to major disaster. Most incident detection systems deploy visual incident detection (VID) systems that often cause false alarms due to various constraints such as night obstacles and a limit of viewing angle. To this end, the proposed method first tries to separate and detect every acoustic event, which is assumed to be an in-tunnel incident, from noisy acoustic signals by using an NTF technique. Then, maximum likelihood estimation using Gaussian mixture model (GMM)-HMMs is carried out to verify whether or not each detected event is an actual incident. Performance evaluation shows that the proposed method operates in real time and achieves high detection accuracy under simulated tunnel conditions.

Fast Natural Feature Tracking Using Optical Flow (광류를 사용한 빠른 자연특징 추적)

  • Bae, Byung-Jo;Park, Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.345-354
    • /
    • 2010
  • Visual tracking techniques for Augmented Reality are classified as either a marker tracking approach or a natural feature tracking approach. Marker-based tracking algorithms can be efficiently implemented sufficient to work in real-time on mobile devices. On the other hand, natural feature tracking methods require a lot of computationally expensive procedures. Most previous natural feature tracking methods include heavy feature extraction and pattern matching procedures for each of the input image frame. It is difficult to implement real-time augmented reality applications including the capability of natural feature tracking on low performance devices. The required computational time cost is also in proportion to the number of patterns to be matched. To speed up the natural feature tracking process, we propose a novel fast tracking method based on optical flow. We implemented the proposed method on mobile devices to run in real-time and be appropriately used with mobile augmented reality applications. Moreover, during tracking, we keep up the total number of feature points by inserting new feature points proportional to the number of vanished feature points. Experimental results showed that the proposed method reduces the computational cost and also stabilizes the camera pose estimation results.

Method for Extracting Features of Conscious Eye Moving for Exploring Space Information (공간정보 탐색을 위한 의식적 시선 이동특성 추출 방법)

  • Kim, Jong-Ha;Jung, Jae-Young
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.2
    • /
    • pp.21-29
    • /
    • 2016
  • This study has estimated the traits of conscious eye moving with the objects of the halls of subway stations. For that estimation, the observation data from eye-tracking were matched with the experiment images, while an independent program was produced and utilized for the analysis of the eye moving in the selected sections, which could provide the ground for clarifying the traits of space-users' eye moving. The outcomes can be defines as the followings. First, The application of the independently produced program provides the method for coding the great amount of observation data, which cut down a lot of analysis time for finding out the traits of conscious eye moving. Accordingly, the inclusion of eye's intentionality in the method for extracting the characteristics of eye moving enabled the features of entrance and exit of particular objects with the course of observing time to be organized. Second, The examination of eye moving at each area surrounding the object factors showed that [out]${\rightarrow}$[in], which the line of sight is from the surround area to the objects, characteristically moved from the left-top (Area I) of the selected object to the object while [in]${\rightarrow}$[out], which is from the inside of the object to the outside, also moved to the left-top (Area I). Overall, there were much eye moving from the tops of right and left (Area I, II) to the object, but the eye moving to the outside was found to move to the left-top (Area I), the right-middle (Area IV) and the right-top (Area II). Third, In order to find if there was any intense eye-moving toward a particular factor, the dominant standards were presented for analysis, which showed that there was much eye-moving from the tops (Area I, II) to the sections of 1 and 2. While the eye-moving of [in] was [I $I{\rightarrow}A$](23.0%), [$I{\rightarrow}B$](16.1%) and [$II{\rightarrow}B$](13.8%), that of [out] was [$A{\rightarrow}I$](14.8%), [$B{\rightarrow}I$](13.6%), [$A{\rightarrow}II$](11.4%), [$B{\rightarrow}IV$](11.4%) and [$B{\rightarrow}II$](10.2%). Though the eye-moving toward objects took place in specific directions (areas), that (out) from the objects to the outside was found to be dispersed widely to different areas.

Estimate Saliency map based on Multi Feature Assistance of Learning Algorithm (다중 특징을 지원하는 학습 기반의 saliency map에 관한 연구)

  • Han, Hyun-Ho;Lee, Gang-Seong;Park, Young-Soo;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.6
    • /
    • pp.29-36
    • /
    • 2017
  • In this paper, we propose a method for generating improved saliency map by learning multiple features to improve the accuracy and reliability of saliency map which has similar result to human visual perception type. In order to overcome the inaccurate result of reverse selection or partial loss in color based salient area estimation in existing salience map generation, the proposed method generates multi feature data based on learning. The features to be considered in the image are analyzed through the process of distinguishing the color pattern and the region having the specificity in the original image, and the learning data is composed by the combination of the similar protrusion area definition and the specificity area using the LAB color space based color analysis. After combining the training data with the extrinsic information obtained from low level features such as frequency, color, and focus information, we reconstructed the final saliency map to minimize the inaccurate saliency area. For the experiment, we compared the ground truth image with the experimental results and obtained the precision-recall value.

Study on the Development of Program for Measuring Preference of Portrait based on Sensibility (감성기반 인물사진 선호도 측정 프로그램 개발 연구)

  • Lee, Chang-Seop;Har, Dong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.2
    • /
    • pp.178-187
    • /
    • 2018
  • This study aimed to develop a model of the program for automation measuring the preference of the portraits based on the relationship between the image quality factors and the preferences in the portraits for manufacturers aiming at high utilization of the users. in order to proceed with the evaluation, the image quality measurement was divided into objective and subjective items, and the evaluation was done through image processing and statistical methods. the image quality measurement items can be divided into objective evaluation items and subjective evaluation items. RSC Contrast, Dynamic Range and Noise were selected for the objective evaluation items, and the numerical values were statistically analyzed and evaluated through the program. Exposure, Color Tone, composition of person, position of person, and out of focus were selected for subjective evaluation items and evaluated by image processing method. By applying objective and subjective assessment items, the results were very accurate, with the results obtained by the developed program and the results of the actual visual inspection. but since the currently developed program can be evalua ted only after facial recognition of the person, future research will need to develop a program that can evaluate all kinds of portraits.