• Title/Summary/Keyword: vision-based method

Search Result 1,447, Processing Time 0.04 seconds

A Guideline Tracing Technique Based on a Virtual Tracing Wheel for Effective Navigation of Vision-based AGVs (비전 기반 무인반송차의 효과적인 운행을 위한 가상추적륜 기반 유도선 추적 기법)

  • Kim, Minhwan;Byun, Sungmin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.539-547
    • /
    • 2016
  • Automated guided vehicles (AGVs) are widely used in industry. Several types of vision-based AGVs have been studied in order to reduce cost of infrastructure building at floor of workspace and to increase flexibility of changing the navigation path layout. A practical vision-based guideline tracing method is proposed in this paper. A virtual tracing wheel is introduced and adopted in this method, which enables a vision-based AGV to trace a guideline in diverse ways. This method is also useful for preventing damage of the guideline by enforcing the real steering wheel of the AGV not to move on the guideline. Usefulness of the virtual tracing wheel is analyzed through computer simulations. Several navigation tests with a commercial AGV were also performed on a usual guideline layout and we confirmed that the virtual tracing wheel based tracing method could work practically well.

Extraction of depth information on moving objects using a C40 DSP board (C40 DSP 보드를 이용한 이동 물체의 깊이 정보 추출)

  • 박태수;모준혁;최익수;박종안
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.5-7
    • /
    • 1996
  • We propose a triangulation method based on stereo vision angles. We setup stereo vision systems which extract the depth information to a moving object by detecting a moving object using difference image method and obtaining the depth information by the triangulation method based on stereo vision angles. The feature point of a moving object is used the geometrical center of the moving object, and the proposed vision system has the accuracy of 0.2mm in the range of 400mm.

  • PDF

A Study on the Determination of 3-D Object's Position Based on Computer Vision Method (컴퓨터 비젼 방법을 이용한 3차원 물체 위치 결정에 관한 연구)

  • 김경석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.26-34
    • /
    • 1999
  • This study shows an alternative method for the determination of object's position, based on a computer vision method. This approach develops the vision system model to define the reciprocal relationship between the 3-D real space and 2-D image plane. The developed model involves the bilinear six-view parameters, which is estimated using the relationship between the camera space location and real coordinates of known position. Based on estimated parameters in independent cameras, the position of unknown object is accomplished using a sequential estimation scheme that permits data of unknown points in each of the 2-D image plane of cameras. This vision control methods the robust and reliable, which overcomes the difficulties of the conventional research such as precise calibration of the vision sensor, exact kinematic modeling of the robot, and correct knowledge of the relative positions and orientation of the robot and CCD camera. Finally, the developed vision control method is tested experimentally by performing determination of object position in the space using computer vision system. These results show the presented method is precise and compatible.

  • PDF

STEREO VISION-BASED FORWARD OBSTACLE DETECTION

  • Jung, H.G.;Lee, Y.H.;Kim, B.J.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.493-504
    • /
    • 2007
  • This paper proposes a stereo vision-based forward obstacle detection and distance measurement method. In general, stereo vision-based obstacle detection methods in automotive applications can be classified into two categories: IPM (Inverse Perspective Mapping)-based and disparity histogram-based. The existing disparity histogram-based method was developed for stop-and-go applications. The proposed method extends the scope of the disparity histogram-based method to highway applications by 1) replacing the fixed rectangular ROI (Region Of Interest) with the traveling lane-based ROI, and 2) replacing the peak detection with a constant threshold with peak detection using the threshold-line and peakness evaluation. In order to increase the true positive rate while decreasing the false positive rate, multiple candidate peaks were generated and then verified by the edge feature correlation method. By testing the proposed method with images captured on the highway, it was shown that the proposed method was able to overcome problems in previous implementations while being applied successfully to highway collision warning/avoidance conditions, In addition, comparisons with laser radar showed that vision sensors with a wider FOV (Field Of View) provided faster responses to cutting-in vehicles. Finally, we integrated the proposed method into a longitudinal collision avoidance system. Experimental results showed that activated braking by risk assessment using the state of the ego-vehicle and measuring the distance to upcoming obstacles could successfully prevent collisions.

Vision-based Guidance for Loitering over a Target

  • Park, Sanghyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.366-377
    • /
    • 2016
  • This paper presents a vision-based guidance method that allows a fixed-wing aircraft to orbit around a target at a given radius. The guidance method uses a simple formula that regulates a relative side-bearing angle estimated by a vision system. The global asymptotic stability of the associated guidance law is demonstrated, and a linear analysis is performed to facilitate the proper selection of the relevant control parameters. A flight experiment is presented to demonstrate the feasibility and performance of the proposed guidance method.

Vision-Based Obstacle Collision Risk Estimation of an Unmanned Surface Vehicle (무인선의 비전기반 장애물 충돌 위험도 평가)

  • Woo, Joohyun;Kim, Nakwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1089-1099
    • /
    • 2015
  • This paper proposes vision-based collision risk estimation method for an unmanned surface vehicle. A robust image-processing algorithm is suggested to detect target obstacles from the vision sensor. Vision-based Target Motion Analysis (TMA) was performed to transform visual information to target motion information. In vision-based TMA, a camera model and optical flow are adopted. Collision risk was calculated by using a fuzzy estimator that uses target motion information and vision information as input variables. To validate the suggested collision risk estimation method, an unmanned surface vehicle experiment was performed.

Loosely-Coupled Vision/INS Integrated Navigation System

  • Kim, Youngsun;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.59-70
    • /
    • 2017
  • Since GPS signals are vulnerable to interference and obstruction, many alternate aiding systems have been proposed to integrate with an inertial navigation system. Among these alternate systems, the vision-aided method has become more attractive due to its benefits in weight, cost and power consumption. This paper proposes a loosely-coupled vision/INS integrated navigation method which can work in GPS-denied environments. The proposed method improves the navigation accuracy by correcting INS navigation and sensor errors using position and attitude outputs of a landmark based vision navigation system. Furthermore, it has advantage to provide redundant navigation output regardless of INS output. Computer simulations and the van tests have been carried out in order to show validity of the proposed method. The results show that the proposed method works well and gives reliable navigation outputs with better performance.

Passive Ranging Based on Planar Homography in a Monocular Vision System

  • Wu, Xin-mei;Guan, Fang-li;Xu, Ai-jun
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.155-170
    • /
    • 2020
  • Passive ranging is a critical part of machine vision measurement. Most of passive ranging methods based on machine vision use binocular technology which need strict hardware conditions and lack of universality. To measure the distance of an object placed on horizontal plane, we present a passive ranging method based on monocular vision system by smartphone. Experimental results show that given the same abscissas, the ordinatesis of the image points linearly related to their actual imaging angles. According to this principle, we first establish a depth extraction model by assuming a linear function and substituting the actual imaging angles and ordinates of the special conjugate points into the linear function. The vertical distance of the target object to the optical axis is then calculated according to imaging principle of camera, and the passive ranging can be derived by depth and vertical distance to the optical axis of target object. Experimental results show that ranging by this method has a higher accuracy compare with others based on binocular vision system. The mean relative error of the depth measurement is 0.937% when the distance is within 3 m. When it is 3-10 m, the mean relative error is 1.71%. Compared with other methods based on monocular vision system, the method does not need to calibrate before ranging and avoids the error caused by data fitting.

Recognition Performance of Vestibular-Ocular Reflex Based Vision Tracking System for Mobile Robot (이동 로봇을 위한 전정안반사 기반 비젼 추적 시스템의 인식 성능 평가)

  • Park, Jae-Hong;Bhan, Wook;Choi, Tae-Young;Kwon, Hyun-Il;Cho, Dong-Il;Kim, Kwang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.496-504
    • /
    • 2009
  • This paper presents a recognition performance of VOR (Vestibular-Ocular Reflex) based vision tracking system for mobile robot. The VOR is a reflex eye movement which, during head movements, produces an eye movement in the direction opposite to the head movement, thus maintaining the image of interested objects placed on the center of retina. We applied this physiological concept to the vision tracking system for high recognition performance in mobile environments. The proposed method was implemented in a vision tracking system consisting of a motion sensor module and an actuation module with vision sensor. We tested the developed system on an x/y stage and a rate table for linear motion and angular motion, respectively. The experimental results show that the recognition rates of the VOR-based method are three times more than non-VOR conventional vision system, which is mainly due to the fact that VOR-based vision tracking system has the line of sight of vision system to be fixed to the object, eventually reducing the blurring effect of images under the dynamic environment. It suggests that the VOR concept proposed in this paper can be applied efficiently to the vision tracking system for mobile robot.

Further Development of Vision-Based Strain Measurement Methods to Verify Finite Element Analyses

  • Kim, Hyung jong;Lee, Daeyong
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.343-352
    • /
    • 1996
  • One of the preferred methods that can be used to verify the results of finite element analysis is to measure surface strains of the deformed part for purpose of direct comparison with simulation results. Instead of using the usual manual method the vision-based measurement method is capable of determining surface geometry and strain from the deformed grid pattern automatically with the help of a computer. To obtain strain distribution over an area, the coordinates of such a surface grid are determined from the multiple video images by applying the photogrammetry principle. Methods to improve the overall accuracy of the vision-based strain measurement system are explored and the possible accuracies that can be attained by such a measurement method are discussed. A major emphasis is placed on the initial grid application method its accuracy and ease of subsequent image processing. Finite element analyses of limiting dome height(LDH) test are carried out and the results of them are compared with exsperimen-tal data.

  • PDF