• Title/Summary/Keyword: vision-based control

Search Result 683, Processing Time 0.036 seconds

Design of Low Cost Real-Time Audience Adaptive Digital Signage using Haar Cascade Facial Measures

  • Lee, Dongwoo;Kim, Daehyun;Lee, Junghoon;Lee, Seungyoun;Hwang, Hyunsuk;Mariappan, Vinayagam;Lee, Minwoo;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.51-57
    • /
    • 2017
  • Digital signage is becoming part of daily life across a wide range of visual advertisements segments market used in stations, hotels, retail stores, hotels, etc. The current digital signage system used in market is generally works on limited user interactivity with static contents. In this paper, a new approach is proposed using computer vision based dynamic audience adaptive cost-effective digital signage system. The proposed design uses the Camera attached Raspberry Pi Open source platform to employ the real-time audience interaction using computer vision algorithms to extract facial features of the audience. The real-time facial features are extracted using Haar Cascade algorithm which are used for audience gender specific rendering of dynamic digital signage content. The audience facial characterization using Haar Cascade is evaluated on the FERET database with 95% accuracy for gender classification. The proposed system, developed and evaluated with male and female audiences in real-life environments camera embedded raspberry pi with good level of accuracy.

Development of a magnetic caterpillar based robot for autonomous scanning in the weldment (용접부 자동 탐상을 위한 이동 로봇의 개발)

  • 장준우;정경민;김호철;이정기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.713-716
    • /
    • 2000
  • In this study, we present a mobile robot for ultrasonic scanning of weldment. magnetic Caterpillar mechanism is selected in order to travel on the inclined surface and vertical wall. A motion control board and motor driver are developed to control four DC-servo motors. A virtual device driver is also developed for the purpose of communicating between the control board and a host PC with Dual 'port ram. To provide the mobile robot with stable and accurate movement, PID control algorithm is applied to the mobile robot control. And a vision system for detecting the weld-line are developed with laser slit beam as a light source. In the experiments, movement of the mobile robot is tested inclined on a surface and a vertical wall.

  • PDF

A Control System Design for the Line-of-Sight Stabilization based on Low-Cost Inertial Sensors (저가 관성센서 기반의 시선안정화 제어시스템 설계)

  • 위정현;홍성경
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.204-209
    • /
    • 2003
  • The line-of-sight stabilization system is an equipment which is loaded on a vehicle and stabilizes the direction of the line-of-sight of the vision sensor to obtain a not-swayed image in the existence of external disturbances. To obtain accurate Euler angles and angular velocities simultaneously we usually need a control system which uses high-price inertial sensors including Vertical Gyro(VG) or Rate Integrating Gyro(RIG). In this paper, we design and implement a control system of a gimbal, which is a line-of-sight stabilization system using a low-cost mixed algorithm of a rate gyro and an accelerometer instead of a VG and a RIG. In the experiment where we laid the implemented line-of-sight stabilization system on the rate table. we can see the stabilized performance to external disturbances.

Adaptive Image Transmission Scheme for Vision-Based Telerobot Control (시각기반 원격로봇 제어를 위한 적응 영상전송기법)

  • Lee, Jong-Kwang;Yoon, Ji-Sup;Kang, E-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1637-1645
    • /
    • 2004
  • In remote control of telerobotics equipment, the real-time visual feedback is necessary in order to facilitate real-time control. Because of the network congestion and the associated delays, the real-time image feedback is generally difficult in the public networks like internet. If the remote user is not able to receive the image feedback within a certain time, the work performance may tend to decrease, and it makes difficulties to control of the telerobotics equipment. In this paper, we propose an improved visual feedback scheme over the internet for telerobotics system. The size of a remote site image and its quality are adjusted for efficient transmission. The constructed system has a better real-time update characteristics, and shows a potential for the real-time visual control of the telerobotics system.

Fast and Fine Control of a Visual Alignment Systems Based on the Misalignment Estimation Filter (정렬오차 추정 필터에 기반한 비전 정렬 시스템의 고속 정밀제어)

  • Jeong, Hae-Min;Hwang, Jae-Woong;Kwon, Sang-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1233-1240
    • /
    • 2010
  • In the flat panel display and semiconductor industries, the visual alignment system is considered as a core technology which determines the productivity of a manufacturing line. It consists of the vision system to extract the centroids of alignment marks and the stage control system to compensate the alignment error. In this paper, we develop a Kalman filter algorithm to estimate the alignment mark postures and propose a coarse-fine alignment control method which utilizes both original fine images and reduced coarse ones in the visual feedback. The error compensation trajectory for the distributed joint servos of the alignment stage is generated in terms of the inverse kinematic solution for the misalignment in task space. In constructing the estimation algorithm, the equation of motion for the alignment marks is given by using the forward kinematics of alignment stage. Secondly, the measurements for the alignment mark centroids are obtained from the reduced images by applying the geometric template matching. As a result, the proposed Kalman filter based coarse-fine alignment control method enables a considerable reduction of alignment time.

Three Dimensional Tracking of Road Signs based on Stereo Vision Technique (스테레오 비전 기술을 이용한 도로 표지판의 3차원 추적)

  • Choi, Chang-Won;Choi, Sung-In;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1259-1266
    • /
    • 2014
  • Road signs provide important safety information about road and traffic conditions to drivers. Road signs include not only common traffic signs but also warning information regarding unexpected obstacles and road constructions. Therefore, accurate detection and identification of road signs is one of the most important research topics related to safe driving. In this paper, we propose a 3-D vision technique to automatically detect and track road signs in a video sequence which is acquired from a stereo vision camera mounted on a vehicle. First, color information is used to initially detect the sign candidates. Second, the SVM (Support Vector Machine) is employed to determine true signs from the candidates. Once a road sign is detected in a video frame, it is continuously tracked from the next frame until it is disappeared. The 2-D position of a detected sign in the next frame is predicted by the 3-D motion of the vehicle. Here, the 3-D vehicle motion is acquired by using the 3-D pose information of the detected sign. Finally, the predicted 2-D position is corrected by template-matching of the scaled template of the detected sign within a window area around the predicted position. Experimental results show that the proposed method can detect and track many types of road signs successfully. Tracking comparisons with two different methods are shown.

OWC based Smart TV Remote Controller Design Using Flashlight

  • Mariappan, Vinayagam;Lee, Minwoo;Choi, Byunghoon;Kim, Jooseok;Lee, Jisung;Choi, Seongjhin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.71-76
    • /
    • 2018
  • The technology convergence of television, communication, and computing devices enables the rich social and entertaining experience through Smart TV in personal living space. The powerful smart TV computing platform allows to provide various user interaction interfaces like IR remote control, web based control, body gesture based control, etc. The presently used smart TV interaction user control methods are not efficient and user-friendly to access different type of media content and services and strongly required advanced way to control and access to the smart TV with easy user interface. This paper propose the optical wireless communication (OWC) based remote controller design for Smart TV using smart device Flashlights. In this approach, the user smart device act as a remote controller with touch based interactive smart device application and transfer the user control interface data to smart TV trough Flashlight using visible light communication method. The smart TV built-in camera follows the optical camera communication (OCC) principle to decode data and control smart TV user access functions according. This proposed method is not harmful as radio frequency (RF) radiation does it on human health and very simple to use as well user does need to any gesture moves to control the smart TV.

A Fast Vision-based Head Tracking Method for Interactive Stereoscopic Viewing

  • Putpuek, Narongsak;Chotikakamthorn, Nopporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1102-1105
    • /
    • 2004
  • In this paper, the problem of a viewer's head tracking in a desktop-based interactive stereoscopic display system is considered. A fast and low-cost approach to the problem is important for such a computing environment. The system under consideration utilizes a shuttle glass for stereoscopic display. The proposed method makes use of an image taken from a single low-cost video camera. By using a simple feature extraction algorithm, the obtained points corresponding to the image of the user-worn shuttle glass are used to estimate the glass center, its local 'yaw' angle, as measured with respect to the glass center, and its global 'yaw' angle as measured with respect to the camera location. With these estimations, the stereoscopic image synthetic program utilizes those values to interactively adjust the two-view stereoscopic image pair as displayed on a computer screen. The adjustment is carried out such that the so-obtained stereoscopic picture, when viewed from a current user position, provides a close-to-real perspective and depth perception. However, because the algorithm and device used are designed for fast computation, the estimation is typically not precise enough to provide a flicker-free interactive viewing. An error concealment method is thus proposed to alleviate the problem. This concealment method should be sufficient for applications that do not require a high degree of visual realism and interaction.

  • PDF

Development of a Vision-based Position Estimation System for the Inspection and Maintenance Manipulator of Steam Generator Tubes a in Nuclear Power Plant

  • Jeong, Kyung-Min;Cho, Jae-Wan;Kim, Seung-Ho;Kim, Seung-Ho;Jung, Seung-Ho;Shin, Ho-Chul;Choi, Chang-Whan;Seo, Yong-Chil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.772-777
    • /
    • 2003
  • A vision-based tool position estimation system for the inspection and maintenance manipulator working inside the steam generator bowl of nuclear power plants can help human operators ensure that the inspection probe or plug are inserted to the targeted tube. Some previous research proposed a simplified tube position verification system that counts the tubes passed through during the motion and displays only the position of the tool. In this paper, by using a general camera calibration approach, tool orientation is also estimated. In order to reduce the computation time and avoid the parameter bias problem in an ellipse fitting, a small number of edge points are collected around the large section of the ellipse boundary. Experiment results show that the camera calibration parameters, detected ellipses, and estimated tool position are appropriate.

  • PDF

A Study on Analog and Digital Meter Recognition Based on Image Processing Technique (영상처리 기법에 기반한 아날로그 및 디지틀 계기의 자동인식에 관한 연구)

  • 김경호;진성일;이용범;이종민
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.9
    • /
    • pp.1215-1230
    • /
    • 1995
  • The purpose of this paper is to build a computer vision system that endows an autonomous mobile robot the ability of automatic measuring of the analog and digital meters installed in nuclear power plant(NPP). This computer vision system takes a significant part in the organization of automatic surveillance and measurement system having the instruments and gadzets in NPP under automatic control situation. In the meter image captured by the camera, the meter area is sorted out using mainly the thresholding and the region labeling and the meter value recognition process follows. The positions and the angles of the needles in analog meter images are detected using the projection based method. In the case of digital meters, digits and points are extracted and finally recognized through the neural network classifier. To use available database containing relevant information about meters and to build fully automatic meter recognition system, the segmentation and recognition of the function-name in the meter printed around the meter area should be achieved for enhancing identification reliability. For thus, the function- name of the meter needs to be identified and furthermore the scale distributions and values are also required to be analyzed for building the more sophisticated system and making the meter recognition fully automatic.

  • PDF