• Title/Summary/Keyword: vision seam tracking

Search Result 64, Processing Time 0.027 seconds

A study on vision seam tracking system at lap joints (겹치기이음에서 용접선 시각 추적 시스템에 관한 연구)

  • 신정식;김재웅;나석주;최칠룡
    • Journal of Welding and Joining
    • /
    • v.9 no.2
    • /
    • pp.20-28
    • /
    • 1991
  • The main subject of this study is the construction of an automatic welding system that has the capability to trace the weld seam in GMA welding of lap joints. The system was composed of a vision sensor, moving torch, and personal computer(IBM-PC). In the developed vision sensor, an image was captured by the frame grabber at the time of short circuit during welding. The threshold method was adopted for determining the structured light and the central difference method for detecting the weld joint. And the seam tracing of the torch was performed by using the data regeneration algorithm. In this system using the image at the time of short circuit, weld seam tracking was performed without any relations to arc light and spatters.

  • PDF

T-joint Laser Welding of Circular and Square Pipes Using the Vision Tracking System (용접선 추적 비전장치를 이용한 원형-사각 파이프의 T형 조인트 레이저용접)

  • Son, Yeong-Il;Park, Gi-Yeong;Lee, Gyeong-Don
    • Laser Solutions
    • /
    • v.12 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • Because of its fast and precise welding performance, laser welding is becoming a new excellent welding method. However, the precise focusing and robust seam tracking are required to apply laser welding to the practical fields. In order to laser weld a type of T joint like a circular pipe on a square pipe, which could be met in the three dimensional structure such as an aluminum space frame, a visual sensor system was developed for automation of focusing and seam tracking. The developed sensor system consists of a digital CCD camera, a structured laser, and a vision processor. It is moved and positioned by a 2-axis motorized stage, which is attached to a 6 axis robot manipulator with a laser welding head. After stripe-type structured laser illuminates a target surface, images are captured through the digital CCD camera. From the image, seam error and defocusing error are calculated using image processing algorithms which includes efficient techniques handling continuously changed image patterns. These errors are corrected by the stage off-line during welding or teaching. Laser welding of a circular pipe on a square pipe was successful with the vision tracking system by reducing the path positioning and de focusing errors due to the robot teaching or a geometrical variation of specimens and jig holding.

  • PDF

The Multipass Joint Tracking System by Vision Sensor (비전센서를 이용한 다층 용접선 추적 시스템)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.14-23
    • /
    • 2007
  • Welding fabrication invariantly involves three district sequential steps: preparation, actual process execution and post-weld inspection. One of the major problems in automating these steps and developing autonomous welding system is the lack of proper sensing strategies. Conventionally, machine vision is used in robotic arc welding only for the correction of pre-taught welding paths in single pass. However, in this paper, multipass tracking more than single pass tracking is performed by conventional seam tracking algorithm and developed one. And tracking performances of two algorithm are compared in multipass tracking. As the result, tracking performance in multi-pass welding shows superior conventional seam tracking algorithm to developed one.

Application of the Laser Vision Sensor for Corrugated Type Workpiece

  • Lee, Ji-Hyoung;Kim, Jae-Gwon;Kim, Jeom-Gu;Park, In-Wan;Kim, Hyung-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.499-503
    • /
    • 2004
  • This application-oriented paper describes an automated welding carriage system to weld a thin corrugated workpiece with welding seam tracking function. Hyundai Heavy Industries Corporation has developed an automatic welding carriage system, which utilizes pulsed plasma arc welding process for corrugated sheets. It can obtain high speed welding more than 2 times faster than traditional TIG based welding system. The aim of this development is to increase the productivity by using automatic plasma welding carriage systems, to track weld seam line using vision sensor automatically, and finally to provide a convenience to operator in order to carry out welding. In this paper a robust image processing and a distance based tracking algorithms are introduced for corrugated workpiece welding. The automatic welding carriage system is controlled by the programmable logic controller(PLC), and the automatic welding seam tracking system is controlled by the industrial personal computer(IPC) equipped with embedded OS. The system was tested at actual workpiece to show the feasibility and performance of proposed algorithm and to confirm the reliability of developed controller.

  • PDF

A Study on a Visual Sensor System for Weld Seam Tracking in Robotic GMA Welding (GMA 용접로봇용 용접선 시각 추적 시스템에 관한 연구)

  • 김재웅;김동호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.643-646
    • /
    • 2000
  • In this study, we constructed a preview-sensing visual sensor system for weld seam tracking in real time in GMA welding. A sensor part consists of a CCD camera, a band-pass filter, a diode laser system with a cylindrical lens, and a vision board for inter frame process. We used a commercialized robot system which includes a GMA welding machine. To extract the weld seam we used a inter frame process in vision board from that we could remove the noise due to the spatters and fume in the image. Since the image was very reasonable by using the inter frame process, we could use the simplest way to extract the weld seam from the image, such as first differential and central difference method. Also we used a moving average method to the successive position data of weld seam for reducing the data fluctuation. In experiment the developed robot system with visual sensor could be able to track a most popular weld seam, such as a fillet-joint, a V-groove, and a lap-joint of which weld seam include planar and height directional variation.

  • PDF

A Study on Automatic Seam Tracking using Vision Sensor (비전센서를 이용한 용접선 자동추적에 관한 연구)

  • 조택동;양상민;전진환
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.68-76
    • /
    • 1998
  • A CCD camera with a laser stripe was applied to realized the automatic weld seam tracking. The 3-dimensional information obtained from the vision system made it possible to generate the weld torch path. The adaptive Hough transformation was used to extract laser stripes an to obtain specific weld points. It takes relatively long time to process image on-line control using the basic control using the basic Hough transformation, but it has a tendency of robustness over the noises such as spatter. For this reason, it was complemented with adaptive Hough transformation to have an on-line processing ability for scanning specific weld points. The dead zone, where the sensing of weld line is impossible, was eliminated by rotating the camera with its rotating axis centered at the weld torch. When weld lines were detected, the camera angle was controlled in order to get the minimum image data for sensing of weld lines. Consequently, the image processing time was reduced.

  • PDF

A Study on Automatic Seam Tracking using Vision Sensor (비전센서를 이용한 자동추적장치에 관한 연구)

  • 전진환;조택동;양상민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1105-1109
    • /
    • 1995
  • A CCD-camera, which is structured with vision system, was used to realize automatic seam-tracking system and 3-D information which is needed to generate torch path, was obtained by using laser-slip beam. To extract laser strip and obtain welding-specific point, Adaptive Hough-transformation was used. Although the basic Hough transformation takes too much time to process image on line, it has a tendency to be robust to the noises as like spatter. For that reson, it was complemented with Adaptive Hough transformation to have an on-line processing ability for scanning a welding-specific point. the dead zone,where the sensing of weld line is impossible, is eliminated by rotating the camera with its rotating axis centered at welding torch. The camera angle is controlled so as to get the minimum image data for the sensing of weld line, hence the image processing time is reduced. The fuzzy controller is adapted to control the camera angle.

  • PDF

THE DEVELOPMENT OF THE NARROW GAP MULTI-PASS WELDING SYSTEM USING LASER VISION SYSTEM

  • Park, Hee-Chang;Park, Young-Jo;Song, Keun-Ho;Lee, Jae-Woong;Jung, Yung-Hwa;Luc Didier
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.706-713
    • /
    • 2002
  • In the multi-pass welding of pressure vessels or ships, the mechanical touch sensor system is generally used together with a manipulator to measure the gap and depth of the narrow gap to perform seam tracking. Unfortunately, such mechanical touch sensors may commit measuring errors caused by the eterioration of the measuring device. An automation system of narrow gap multi-pass welding using a laser vision system which can track the seam line of narrow gap and which can control welding power has been developed. The joint profile of the narrow gap, with 250mm depth and 28mm width, can be captured by laser vision camera. The image is then processed for defining tracking positions of the torch during welding. Then, the real-time correction of lateral and vertical position of the torch can be done by the laser vision system. The adaptive control of welding conditions like welding Currents and welding speeds, can also be performed by the laser vision system, which cannot be done by conventional mechanical touch systems. The developed automation system will be adopted to reduce the idle time of welders, which happens frequently in conventional long welding processes, and to improve the reliability of the weld quality as well.

  • PDF

The Development of the Narrow Gap Multi-Pass Welding System Using Laser Vision System

  • Park, H.C.;Park, Y.J.;Song, K.H.;Lee, J.W.;Jung, Y.H.;Didier, L.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.45-51
    • /
    • 2002
  • In the multi-pass welding of pressure vessels or ships, the mechanical touch sensor system is generally used together with a manipulator to measure the gap and depth of the narrow gap to perform seam tracking. Unfortunately, such mechanical touch sensors may commit measuring errors caused by the deterioration of the measuring device. An automation system of narrow gap multi-pass welding using a laser vision system which can track the seam line of narrow gap and which can control welding power has been developed. The joint profile of the narrow gap, with 250mm depth and 28mm width, can be captured by laser vision camera. The image is then processed for defining tracking positions of the torch during welding. Then, the real-time correction of lateral and vertical position of the torch can be done by the laser vision system. The adaptive control of welding conditions like welding currents and welding speeds, can also be performed by the laser vision system, which cannot be done by conventional mechanical touch systems. The developed automation system will be adopted to reduce the idle time of welders, which happens frequently in conventional long welding processes, and to improve the reliability of the weld quality as well.

  • PDF