• 제목/요약/키워드: vision measurement system

검색결과 458건 처리시간 0.033초

시각측정시스템의 캘리브레이션 및 측정성능 검토 (Calibration and INvestigation into Measurement Performance of a Visual Sensing System)

  • 김진영;조형석
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.113-121
    • /
    • 1999
  • It is necessary to calibrate measurement systems to enhance its measurement accuracy. The visual sensing system that is presented in our previous work has to be calibrated, too. It is a multiple mirror system for three-dimensional measurement, which is composed of a camera and a series of mirrors. It is important to calibrate the positions and orientations of the mirrors relative to the camera because they have direct influence on the relationship between the image plane and the task space. This paper presents the calibration method for the visual sensing system. To confirm the measurement performance of the implemented system. its measurement accuracy in measuring the locations in three-dimensional space is investigated. A series of experiments for measuring the locations of the circle-shaped marks are performed. Experimental results show that the sensing system can be effectively used for three-dimensional measurement.

  • PDF

컴퓨터 시각(視覺)에 의거한 측정기술(測定技術) 및 측정오차(測定誤差)의 분석(分析)과 보정(補正) (Computer Vision Based Measurement, Error Analysis and Calibration)

  • 황헌;이충호
    • Journal of Biosystems Engineering
    • /
    • 제17권1호
    • /
    • pp.65-78
    • /
    • 1992
  • When using a computer vision system for a measurement, the geometrically distorted input image usually restricts the site and size of the measuring window. A geometrically distorted image caused by the image sensing and processing hardware degrades the accuracy of the visual measurement and prohibits the arbitrary selection of the measuring scope. Therefore, an image calibration is inevitable to improve the measuring accuracy. A calibration process is usually done via four steps such as measurement, modeling, parameter estimation, and compensation. In this paper, the efficient error calibration technique of a geometrically distorted input image was developed using a neural network. After calibrating a unit pixel, the distorted image was compensated by training CMLAN(Cerebellar Model Linear Associator Network) without modeling the behavior of any system element. The input/output training pairs for the network was obtained by processing the image of the devised sampled pattern. The generalization property of the network successfully compensates the distortion errors of the untrained arbitrary pixel points on the image space. The error convergence of the trained network with respect to the network control parameters were also presented. The compensated image through the network was then post processed using a simple DDA(Digital Differential Analyzer) to avoid the pixel disconnectivity. The compensation effect was verified using known sized geometric primitives. A way to extract directly a real scaled geometric quantity of the object from the 8-directional chain coding was also devised and coded. Since the developed calibration algorithm does not require any knowledge of modeling system elements and estimating parameters, it can be applied simply to any image processing system. Furthermore, it efficiently enhances the measurement accuracy and allows the arbitrary sizing and locating of the measuring window. The applied and developed algorithms were coded as a menu driven way using MS-C language Ver. 6.0, PC VISION PLUS library functions, and VGA graphic functions.

  • PDF

Real-Time Pipe Fault Detection System Using Computer Vision

  • Kim Hyoung-Seok;Lee Byung-Ryong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권1호
    • /
    • pp.30-34
    • /
    • 2006
  • Recently, there has been an increasing demand for computer-vision-based inspection and/or measurement system as a part of factory automation equipment. In general, it is almost impossible to check the fault of all parts, coming from part-feeding system, with only manual inspection because of time limitation. Therefore, most of manual inspection is applied to specific samples, not all coming parts, and manual inspection neither guarantee consistent measuring accuracy nor decrease working time. Thus, in order to improve the measuring speed and accuracy of the inspection, a computer-aided measuring and analysis method is highly needed. In this paper, a computer-vision-based pipe inspection system is proposed, where the front and side-view profiles of three different kinds of pipes, coming from a forming line, are acquired by computer vision. And the edge detection is processed by using Laplace operator. To reduce the vision processing time, modified Hough transform is used with clustering method for straight line detection. And the center points and diameters of inner and outer circle are found to determine eccentricity of the parts. Also, an inspection system has been built so that the data and images of faulted parts are stored as files and transferred to the server.

카메라를 이용한 축계 비틀림 계측 장치 개발 (A Study of the Shaft Power Measuring System Using Cameras)

  • 정정순;김영복;최명수
    • 한국해양공학회지
    • /
    • 제24권4호
    • /
    • pp.72-77
    • /
    • 2010
  • This paper presents a method for measuring the shaft power of a marine main engine. Usually, in traditional systems for measuring shaft power, a strain gauge is used even though it has several disadvantages. First, it is difficult to set up the strain gauge on the shaft and acquire the correct signal for analysis. Second, it is very expensive and complicated. For these reasons, we investigated alternative approaches for measuring shaft power and proposed a new method that uses a vision-based measurement system. For this study, templates for image processing and CCD cameras were installed at the both ends of the shaft. Then, in order for the cameras to capture the images synchronously, we used a trigger mark and a optical sensor. The position of each template between the first and the second camera images were compared to calculate the torsion angle. The proposed measurement system can be installed more easily than traditional measurement systems and is suitable for any shaft because it does not contact the shaft. With this approach, it is possible to measure the shaft power while a ship is operating.

역공학에서 센서융합에 의한 효율적인 데이터 획득 (Efficient Digitizing in Reverse Engineering By Sensor Fusion)

  • 박영근;고태조;김희술
    • 한국정밀공학회지
    • /
    • 제18권9호
    • /
    • pp.61-70
    • /
    • 2001
  • This paper introduces a new digitization method with sensor fusion for shape measurement in reverse engineering. Digitization can be classified into contact and non-contact type according to the measurement devices. Important thing in digitization is speed and accuracy. The former is excellent in speed and the latter is good for accuracy. Sensor fusion in digitization intends to incorporate the merits of both types so that the system can be automatized. Firstly, non-contact sensor with vision system acquires coarse 3D point data rapidly. This process is needed to identify and loco]ice the object located at unknown position on the table. Secondly, accurate 3D point data can be automatically obtained using scanning probe based on the previously measured coarse 3D point data. In the research, a great number of measuring points of equi-distance were instructed along the line acquired by the vision system. Finally, the digitized 3D point data are approximated to the rational B-spline surface equation, and the free-formed surface information can be transferred to a commercial CAD/CAM system via IGES translation in order to machine the modeled geometric shape.

  • PDF

바이프리즘 스테레오 시각 센서를 이용한 GMA 용접 비드의 3차원 형상 측정 (Measurement of GMAW Bead Geometry Using Biprism Stereo Vision Sensor)

  • 이지혜;이두현;유중돈
    • Journal of Welding and Joining
    • /
    • 제19권2호
    • /
    • pp.200-207
    • /
    • 2001
  • Three-diemnsional bead profile was measured using the biprism stereo vision sensor in GMAW, which consists of an optical filter, biprism and CCD camera. Since single CCD camera is used, this system has various advantages over the conventional stereo vision system using two cameras such as finding the corresponding points along the horizontal scanline. In this wort, the biprism stereo vision sensor was designed for the GMAW, and the linear calibration method was proposed to determine the prism and camera parameters. Image processing techniques were employed to find the corresponding point along the pool boundary. The ism-intensity contour corresponding to the pool boundary was found in the pixel order and the filter-based matching algorithm was used to refine the corresponding points in the subpixel order. Predicted bead dimensions were in broad agreements with the measured results under the conditions of spray mode and humping bead.

  • PDF

컴퓨터비전을 이용한 지중관로의 직경 측정 (Measurement of the Underpipe Diameter by using Computer Vision)

  • 김기범;조성만;주원종
    • 한국생산제조학회지
    • /
    • 제26권2호
    • /
    • pp.251-256
    • /
    • 2017
  • This study developed an image processing system for detecting damages on underground spiral PVC pipes. The detection method is simple-identifying damaged areas by measuring circularity along the pipeline. This uses the assumption that damage parts will not make a circular shape. Conventional devices check the circular shape of the pipe along the pipeline by measuring the angles between 6 spring-connected legs on the device. The conventional device, however, requires the insertion of 3 different wires (electrical, communication, and camera lines) along with a guide wire for pulling the device. The developed system presented here has simplified this system, requiring only a camera line while maintaining reasonable accuracy in damage detection.

Experimental Study of Spacecraft Pose Estimation Algorithm Using Vision-based Sensor

  • Hyun, Jeonghoon;Eun, Youngho;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권4호
    • /
    • pp.263-277
    • /
    • 2018
  • This paper presents a vision-based relative pose estimation algorithm and its validation through both numerical and hardware experiments. The algorithm and the hardware system were simultaneously designed considering actual experimental conditions. Two estimation techniques were utilized to estimate relative pose; one was a nonlinear least square method for initial estimation, and the other was an extended Kalman Filter for subsequent on-line estimation. A measurement model of the vision sensor and equations of motion including nonlinear perturbations were utilized in the estimation process. Numerical simulations were performed and analyzed for both the autonomous docking and formation flying scenarios. A configuration of LED-based beacons was designed to avoid measurement singularity, and its structural information was implemented in the estimation algorithm. The proposed algorithm was verified again in the experimental environment by using the Autonomous Spacecraft Test Environment for Rendezvous In proXimity (ASTERIX) facility. Additionally, a laser distance meter was added to the estimation algorithm to improve the relative position estimation accuracy. Throughout this study, the performance required for autonomous docking could be presented by confirming the change in estimation accuracy with respect to the level of measurement error. In addition, hardware experiments confirmed the effectiveness of the suggested algorithm and its applicability to actual tasks in the real world.

머신 비젼을 이용한 실시간 링클 측정 시스템 개발 (Development of On-line Wrinkle Measurement System Using Machine Vision)

  • 신동근;토호앙밍;고성림
    • 대한기계학회논문집A
    • /
    • 제32권3호
    • /
    • pp.274-279
    • /
    • 2008
  • Roll to roll (R2R) manufacturing process, also known as 'web processing', has been tried for producing electronic devices on a flexible plastic or metal foil. To increase the performance and productivity the R2R process, effective control and on-line supervision for web quality becomes very important. Wrinkle is one of the defects, which is incurred due to compressive stresses. A system for on-line measurement of wrinkle is developed using area scan camera and machine vision laser. The 2D image, obtained by area scan camera, is produced by Gaussian regression method to characterize the wrinkle on a transparent web. The experiment proves that 0.3mm wrinkle height can be measured successfully with 74fps.