• Title/Summary/Keyword: vision guided robotic system

Search Result 6, Processing Time 0.022 seconds

An Automatic Teaching Method by Vision Information for A Robotic Assembly System

  • Ahn, Cheol-Ki;Lee, Min-Cheol;Kim, Jong-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.65-68
    • /
    • 1999
  • In this study, an off-line automatic teaching method using vision information for robotic assembly task is proposed. Many of industrial robots are still taught and programmed by a teaching pendant. The robot is guided by a human operator to the desired application locations. These motions are recorded and are later edited, within the robotic language using in the robot controller, and played back repetitively to perform the robot task. This conventional teaching method is time-consuming and somewhat dangerous. In the proposed method, the operator teaches the desired locations on the image acquired through CCD camera mounted on the robot hand. The robotic language program is automatically generated and transferred to the robot controller. This teaching process is implemented through an off-line programming(OLP) software. The OLP is developed for the robotic assembly system used in this study. In order to transform the location on image coordinates into robot coordinates, a calibration process is established. The proposed teaching method is implemented and evaluated on the assembly system for soldering electronic parts on a circuit board. A six-axis articulated robot executes assembly task according to the off-line automatic teaching.

  • PDF

The Development of Underwater Robotic System and Its application to Visual Inspection of Nuclear Reactor Internals (수중로봇 시스템의 개발과 원자로 압력용기 육안검사에의 적용)

  • 조병학;변승현;신창훈;양장범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1327-1330
    • /
    • 2004
  • An underwater robotic system has been developed and applied to visual inspection of reactor vessel internals. The Korea Electric Power Robot for Visual Test (KeproVt) consists of an underwater robot, a vision processor-based measuring unit, a master control station and a servo control station. The robot guided by the control station with the measuring unit can be controlled to have any motion at any position in the reactor vessel with $\pm$1 cm positioning and $\pm$2 degrees heading accuracies with enough precision to inspect reactor internals. A simple and fast installation process is emphasized in the developed system. The developed robotic system was successfully deployed at the Younggwang Nuclear Unit 1 for the visual inspection of reactor internals.

  • PDF

Utilization of Vision in Off-Line Teaching for assembly robot (조립용 로봇의 오프라인 교시를 위한 영상 정보의 이용에 관한 연구)

  • 안철기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.543-548
    • /
    • 2000
  • In this study, an interactive programming method for robot in electronic part assembly task is proposed. Many of industrial robots are still taught and programmed by a teach pendant. The robot is guided by a human operator to the desired application locations. These motions are recorded and are later edited, within the robotic language using in the robot controller, and play back repetitively to perform robot task. This conventional teaching method is time-consuming and somewhat dangerous. In the proposed method, the operator teaches the desired locations on the image acquired through CCD camera mounted on the robot hand. The robotic language program is automatically generated and downloaded to the robot controller. This teaching process is implemented through an off-line programming software. The OLP is developed for an robotic assembly system used in this study. In order to transform the location on image coordinates into robot coordinates, a calibration process is established. The proposed teaching method is implemented and evaluated on an assembly system for soldering electronic parts on a circuit board. A six-axis articulated robot executes assembly task according to the off-line teaching in the system.

  • PDF

Development of a Vision-based Blank Alignment Unit for Press Automation Process (프레스 자동화 공정을 위한 비전 기반 블랭크 정렬 장치 개발)

  • Oh, Jong-Kyu;Kim, Daesik;Kim, Soo-Jong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.65-69
    • /
    • 2015
  • A vision-based blank alignment unit for a press automation line is introduced in this paper. A press is a machine tool that changes the shape of a blank by applying pressure and is widely used in industries requiring mass production. In traditional press automation lines, a mechanical centering unit, which consists of guides and ball bearings, is employed to align a blank before a robot inserts it into the press. However it can only align limited sized and shaped of blanks. Moreover it cannot be applied to a process where more than two blanks are simultaneously inserted. To overcome these problems, we developed a press centering unit by means of vision sensors for press automation lines. The specification of the vision system is determined by considering information of the blank and the required accuracy. A vision application S/W with pattern recognition, camera calibration and monitoring functions is designed to successfully detect multiple blanks. Through real experiments with an industrial robot, we validated that the proposed system was able to align various sizes and shapes of blanks, and successfully detect more than two blanks which were simultaneously inserted.

Intelligent systems for control

  • Erickson, Jon D.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.4-12
    • /
    • 1996
  • This keynote presentation covers the subject of intelligent systems development for monitoring and control in various NASA space applications. Similar intelligent systems technology also has applications in terrestrial commercial applications. Discussion will be given of the general approach of intelligent systems and description given of intelligent systems under prototype development for possible use in Space Shuttle Upgrade, in the Experimental Crew Return. Vehicle, and in free-flying space robotic cameras to provide autonomy to these spacecraft with flexible human intervention, if desired or needed. Development of intelligent system monitoring and control for regenerative life support subsystems such as NASA's human rated Bio-PLEX test facility is also described. A video showing two recent world's firsts in real-time vision-guided robotic arm and hand grasping of tumbling and translating complex shaped objects in micro-gravity will also be shown.

  • PDF

Development of Multi-functional Tele-operative Modular Robotic System For Watermelon Cultivation in Greenhouse

  • H. Hwang;Kim, C. S.;Park, D. Y.
    • Journal of Biosystems Engineering
    • /
    • v.28 no.6
    • /
    • pp.517-524
    • /
    • 2003
  • There have been worldwide research and development efforts to automate various processes of bio-production and those efforts will be expanded with priority given to tasks which require high intensive labor or produce high value-added product and tasks under hostile environment. In the field of bio-production capabilities of the versatility and robustness of automated system have been major bottlenecks along with economical efficiency. This paper introduces a new concept of automation based on tole-operation, which can provide solutions to overcome inherent difficulties in automating bio-production processes. Operator(farmer), computer, and automatic machinery share their roles utilizing their maximum merits to accomplish given tasks successfully. Among processes of greenhouse watermelon cultivation tasks such as pruning, watering, pesticide application, and harvest with loading were chosen based on the required labor intensiveness and functional similarities to realize the proposed concept. The developed system was composed of 5 major hardware modules such as wireless remote monitoring and task control module, wireless remote image acquisition and data transmission module, gantry system equipped with 4 d.o.f. Cartesian type robotic manipulator, exchangeable modular type end-effectors, and guided watermelon loading and storage module. The system was operated through the graphic user interface using touch screen monitor and wireless data communication among operator, computer, and machine. The proposed system showed practical and feasible way of automation in the field of volatile bio-production process.