• 제목/요약/키워드: viscous pump

검색결과 58건 처리시간 0.019초

초소형 점성 펌프의 Wavier-Stokes 해석 (NAVIER-STOKES SIMULATION OF A MICRO-VISCOUS PUMP)

  • 강동진
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.75-80
    • /
    • 2006
  • Navier-Stokes simulation of the flow in a micro viscous pump is carried out. The micro viscous pump consists of a rotating circular rotor placed in a two dimensional channel. All simulation is carried out by using a finite volume approach, at the Reynolds number of 0.5, to study the performance of the micro viscous pump. Length of channel of the pump is varied to simulate the effects of the pumping load. Numerical solutions show that the net flow of the pump is realized by two counter rotating vortices formed on both sides of the rotor. The volume flow rate of the pump is decreased as length of the channel is increased, while the static pressure difference across the rotor is increased. The static pressure difference across the rotor is observed to be inversely proportional to the volume flow rate as inertia effects are negligibly small. The efficiency of the pump is found to reach a maximum when two counter rotating vortices on both sides of the rotor becomes to merge forming an outer enveloping vortex.

Reynolds 수와 Knudsen 수가 초소형 점성펌프에 미치는 영향 (EFFECTS OF THE REYNOLDS AND KNUDSEN NUMBERS ON THE FLOW OF A MICRO-VISCOUS PUMP)

  • 강동진;이벨리나이바노바이바노바
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.14-19
    • /
    • 2008
  • Effects of the Reynolds and Knudsen numbers on a micro-viscous pump are studied by using a Navier-Stokes code based on a finite volume method. The micro viscous pump consists of a circular rotor and a two-dimensional channel. The channel walls are treated by using a slip velocity model. The Reynolds number is studied in the range of $0.1{\sim}50$. The Knudsen number varies from 0.01 to 0.1. Numerical solutions show that the pump works efficiently when two counter rotating vortices formed on both sides of the rotor have the same size and intensity. As the Reynolds number increases, the size and intensity of the vortex on the inlet side of the pump decrease. It disappears when the Reynolds number is larger than about Re=20. The characteristics of the performance of the pump is shown to deteriorate, in terms of mean velocity and pressure rise, as the Reynolds number increases. The Knudsen number shows a different effect on the characteristics of the pump. As it increases, the mean velocity and pressure rise decrease but the characteristics of the vortex flow remains unchanged, unlike the effect of Reynolds number.

스파이럴 채널을 가진 초소형 점성 펌프의 Navier-Stokes 해석 (NAVIER-STOKES SIMULATION OF A VISCOUS MICRO PUMP WITH A SPIRAL CHANNEL)

  • 서주형;강동진
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.90-95
    • /
    • 2011
  • The Navier-Stokes equations are solved to study the flow characteristics of a micro viscous pump. The viscous micropump is consisted of a stationary disk with a spiral shaped channel and a rotating disk. A simple geometrical model for the tip clearance is proposed and validated by comparing computed flow rate with corresponding experimental data. Present numerical solutions show satisfactory agreement with the corresponding experimental data. The tip clearance effect is found to become significant as the rotational speed increases. As the pressure load increases, a reversed flow region is seen to form near the stationary disk. The height of the channel is shown to be optimized in terms of the flow rate for a given rotational speed and pressure load. The optimal height of the channel becomes small as the rotational speed decreases or the pressure load increases. The flow rate of the pump is found to be in proportion to the width of channel.

Effects of Volute Throat Enlargement and Fluid Viscosity on the Performance of an Over Hung Centrifugal Pump

  • Khoeini, Davood;Riasi, Alireza;Shahmoradi, Ali
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권1호
    • /
    • pp.30-39
    • /
    • 2017
  • In the current study, identifying regimes and behaviors of the various viscous fluids in a typical horizontal single-stage centrifugal pump and improving its performance by enhancing volute throat area have been surveyed numerically and experimentally. Indeed the initial pump had insufficient head at BEP (Best Efficient Point) in relevant applications. In order to solve this problem, the method of increasing the volute throat area on the prototype was used in steps and eventually the increased head values have been achieved. Then modified centrifugal pump, that has been constructed based on the modified control volume from numerical results, has been tested thoroughly. The maximum head and efficiency discrepancy between numerical and experimental results in BEP were 1.4 and 2.6% respectively. The effects of viscous fluids, from 1 cSt to 500 cSt, on the performance curves of centrifugal pump have been investigated as well and results showed that viscous fluids has significant effect on them. Indeed the highest head and efficiency in the same conditions at BEP has been obtained in viscosity 1 cst which was by 19.2% and 44% greater than the viscosity 500 cSt. It is also found that the highest viscous fluid had the highest energy consumption as the absorbed power of highest viscous fluid, 500 cSt, increased up to approximately 55% above the lowest viscous fluid, 1 cSt, values.

한 쌍의 실린더를 가지는 점성구동 마이크로 펌프의 성능 해석 (Performance Analysis of the Viscous-driven Micropump with Tandem Rotating Cylinders)

  • 최형일;조성찬;맹주성
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1256-1261
    • /
    • 2003
  • Since the viscous effect increases as the size of device decreases, viscous-driven micropump is a promising mechanism in microscale applications. In the present study, a dual-rotor type pump which contains two counter-rotating cylinders for improving performance characteristics is proposed. First, for flows in the single-rotor type pump, the present unstructured grid simulation method is validated by comparing its results to the previous results. Next, the performance of the dual-rotor type pump is evaluated by the parametric studies and is compared to that of the previous single-rotor type pump. The flow characteristics are qualitatively similar to those of single-rotor type pump. However, the performance of the micropump with tandem rotors is still better than that of previous pumping type, e.g. much larger flow rate, smaller driving region, higher efficiency, and wider operation range.

비정렬 중첩격자기법을 이용한 수중추진기 주위의 점성유동 해석 (VISCOUS FLOW ANALYSIS OF UNDERWATER PROPULSOR USING AN UNSTRUCTURED OVERSET MESH TECHNIQUE)

  • 안상준;권오준;정영래
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.341-346
    • /
    • 2010
  • In this paper, viscous flow calculation of pump-jet that is used as underwater propulsor was made by using RANS equation. For the validation, calculation for DTRC4119 marine propeller was made and reasonable agreements were obtained between the present results and the experiment. An unstructured overset mesh technique is used for analysis of relative motion between rotor and stator in pump-jet propulsor. Results for pump-jet propulsor were compared with computational results of another researcher.

  • PDF

자동차용 유압베인펌프의 고속에서 베인과 캠링간의 이간현상 (The Separation of the Vane and the Camring at high speed of an Oil Hydraulic Vane Pump for Automobile)

  • 조인성;백일현;정재연
    • Tribology and Lubricants
    • /
    • 제26권2호
    • /
    • pp.136-141
    • /
    • 2010
  • In an oil hydraulic vane pump for an automobile, it is very important that the vane doesn't separate from the camring inner race during the operation of the vane pump. The vane generally has not only the oil hydraulic force acting on the bottom face to contact to camring inner race but there is also an inertial force and viscous force. Because the oil hydraulic force is much larger than the other forces, the contact state between the vane tip and the camring inner race is sufficient. However, the contact state between the vane tip and the camring inner race is only affected by the inertial and viscous forces during the delivery of the vane pump, because the oil hydraulic force acting on the vane is in equilibrium. If the inertial force is larger than the viscous force, which happens when the vane is separated from the camring inner race, the delivery of the vane pump can become unstable or the volume efficiency can become decrease rapidly. Therefore, in this paper, the state of the contact between the vane and the camring is considered. The results show that the rotating speed of the shaft, the operating temperature of the oil, the clearance between the vane and the rotor, and the mass of the vane exert a great influence on the state of the contact between the vane and the camring.

점성이 높은 유체를 사용하는 펌프의 성능해석 (Pump Performance Analyses with High Viscous Fluids)

  • 김동주;노형운;서상호
    • 한국유체기계학회 논문집
    • /
    • 제7권2호
    • /
    • pp.21-26
    • /
    • 2004
  • In this study the effects of fluid viscosity on the pump performances for a conventional centrifugal pump were experimentally investigated. The study aimed to compare the pump characteristics between water and viscosity fluids. In order to measure the flow rate and pressure, v-notch welt and bourdon pressure gauges were used for the codes of KS B6301 and KS B6302. The working fluids were water, aqueous sugar and glycerin solutions. The results were summarized as follows : The experimental results were summarized as follows : the pump characteristics of the total head, shaft power, and efficiency with high viscosity fluids were different from those of water. When the viscosity of the applied fluid was increased, the total head and efficiency were more decreased than those of water. The decreasing gradients of the total head and the efficiency were larger than water due to the increased disk friction losses at the duty operation point. However, the shut-off head was almost constant regardless the viscosity of applied fluids. Each efficiency curves for the sugar $20w\%$ and glycerin $20w\%$ solutions was decreased up to $15.1\%$ and $34.4\%$ than that of water, respectively.

가변용량형 피스톤펌프의 파라미터 추정 (Estimation of Parameters in a Variable Displacement Piston Pump)

  • 허준영;리차드 버튼
    • 유공압시스템학회논문집
    • /
    • 제1권4호
    • /
    • pp.9-14
    • /
    • 2004
  • An estimation technique called the Extended Kalman filter is used to estimate viscous friction, spring initial contraction, and the spring constant on the swash plate of a variable displacement pump. The feasibility of the approach was established using a simulation study. It showed that these parameters could be estimated very accurately in a reliable and independent fashion. A special experimental system was set up to facilitate the measurement of certain states to enhance the Kalman Filtering approach. The aforementioned parameters were estimated and found to be reasonably repeatable for a common operating point. It was very evident that as the operating conditions changed (i.e. temperature) so did the estimated values of certain parameters such as viscous friction. This was believed to be a good verification test for the approach.

  • PDF