• Title/Summary/Keyword: viscous boundary

Search Result 303, Processing Time 0.03 seconds

A study on the hydrofoil section shapes in consideration of viscous effects for marine propeller blades (점성의 영향을 고려한 선박 추진기용 익형의 단면 형상에 관한 연구)

  • 김시영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.46-56
    • /
    • 1988
  • The author has presented a new approach to design hydrofoil section shapes in consideration of viscous for marine propeller blades. In suction sides of propeller blades, the pressure distribution on hydrofoil sections in non-cavitating flow should be examined before the study of cavitation characteristics. Generally, the calculation results for hydrofoil conformal mapping method by which neglect viscous effects do not agree with experimental ones. Moreover, another papers reported that laminar separation bubble and transition played an important role on the cavitation inception. From these considerations, it is very important to study the viscous effects of the hydrofoil sections, especially the mechanism separation bubble and the apparent thickness of hydrofoil section. Therefore, the new design method of hydrofoil sections in consideration of viscous effects in comparison to the airfoil section should be studied. In designing the new hydrofoil section shapes, based on Eppler theory, the author tried to give the peak negative pressure in leading edge region for NACA airfoil in consideration of viscous effects without turbulent boundary layer separation as much as possible. The design method was verified from the fact that the boundary characteristics was improved and the lifts of new hydrofoils were slightly in creased in comparison to these of NACA 16-012 symmetrical, NACA 4412 non-symmetrical airfoils.

  • PDF

A STUDY OF INCOMPRESSIBLE VISCOUS FLOW ANALYSIS BY VORTEX-IN-CELL METHOD (보오텍스 인 셀 방법을 이용한 점성유동해석 연구)

  • Lee, J.H.;Kim, Y.C.;Lee, K.J.;Suh, J.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.78-85
    • /
    • 2011
  • The Vortex-In-Cell(VIC) method combined with panel method is applied to the analysis of incompressible unsteady viscous flow. The dynamics of resulting flow is governed by the vorticity transport equation in Lagrangian form with vortex particle representation of the flow field. A regular grid which is independent to the shape of a body is used for numerical evaluation based on immersed boundary technique. With an introduction of this approach, the development and validation of the VIC method is presented with some computational results for incompressible viscous flow around two or three dimensional bodies such as wing section, sphere, finite wing and marine propeller.

  • PDF

Effect of Mesh Size on the Viscous Flow Parameters of an Axisymmetric Nozzle

  • Haoui, Rabah
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.149-155
    • /
    • 2011
  • The viscous flow in an axisymmetric nozzle was analyzed while accounting for the mesh sizes in both in the free stream and the boundary layer. The Navier-Stokes equations were resolved using the finite volume method in order to determine the supersonic flow parameters at the exit of the converging-diverging nozzle. The numerical technique in the aforementioned method uses the flux vector splitting of Van Leer. An adequate time stepping parameter, along with the Courant, Friedrich, Lewis coefficient and mesh size level, was selected to ensure numerical convergence. The boundary layer thickness significantly affected the viscous flow parameters at the exit of the nozzle. The best solution was obtained using a very fine grid, especially near the wall at which a strong variation of velocity, temperature and shear stress was observed. This study confirmed that the boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value. The nozzles are used at the exit of the shock tube in order to obtain supersonic flows for various tests. They also used in propulsion to obtain the thrust necessary to the displacement of the vehicles.

Simulations of the Unsteady Viscous Flow Around an Impulsively Started Cylinder Using Improved Vortex Particle Method (개선된 입자와법을 이용한 급 출발하는 실린더 주위의 비정상 점성 유동 시뮬레이션)

  • Jin, Dong-Sik;Lee, Sang-Hwan;Lee, Ju-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.733-743
    • /
    • 2000
  • We solve the integral representation of the Navier-Stokes equations in a lagrangian view by tracking the particles, which have vortex strengths. We simulate the unsteady viscous flow around an impulsively started cylinder using the vortex particle method. Particles are advanced via the Biot-Savart law for a lagrangian evolution of particles. The particle strength is modified based on the scheme of particle strength exchange. The solid boundary satisfies the no-slip boundary condition by the vorticity generation algorithm. We newly modify the diffusion scheme and the boundary condition for simulating an unsteady flow efficiently. To save the computation time, we propose the mixed scheme of particle strength exchange and core expansion. We also use a lot of panels to ignore the curvature of the cylinder, and not to solve the evaluation of the surface density. Results are compared to those from other theoretical and experimental works.

Reduction of Skin Friction Force for Turbulent Boundary Layer (난류 경계층의 표면 마찰력 감소화)

  • Kim, Si-Young
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.5 no.2
    • /
    • pp.128-137
    • /
    • 1993
  • This paper presents a new concept to reduce turbulent frictional drag by injecting micro-bubble into buffer layer of turbulent boundary layer on flat plate. The buffer layer of boundary was specified by minus velocity gradient of law of the wall. When the buffer layer region of turbulent boundary layer is filled with micro-bubble of air and viscous of the region is kept low, the velocity profile in the region should be changed substantially. Then the Reynolds stress in the buffer layer region becomes less, which guide to higher velocity gradient there. It results in reduction of velocity gradient at the viscous sublayer, which gives the reduction of shear stress at the wall.

  • PDF

IMMERSED BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOW AROUND MOVING BODIES (이동하는 물체 주위의 압축성 유동에 대한 가상경계법)

  • Cho, Yong;Chopra, Jogesh;Morris, Philip J.
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.35-43
    • /
    • 2008
  • A methodology for the simulation of compressible high Reynolds number flow over rigid and moving bodies on a structured Cartesian grid is described in this paper. The approach is based on a modified version of the Brinkman Penalization method. To avoid oscillations in the vicinity of the body and to simulate shcok-containing flows, a Weighted Essentially Non-Oscillatory scheme is used to discretize the spatial flux derivatives. For high Reynolds number viscous flow, two turbulence models of the two-equation Menter's SST URANS model and a two-equation Detached Eddy Simulation are implemented. Some simple flow examples are given to assess the accuracy of the technique. Finally, a moving grid capability is demonstrated.

IMMERSED BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOW AROUND MOVING BODIES (이동하는 물체 주위의 압축성 유동에 대한 가상경계법)

  • Cho, Yong;Chopra, Jogesh;Morris, Philip J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.200-208
    • /
    • 2007
  • A methodology for the simulation of compressible high Reynolds number flow over rigid and moving bodies on a structured Cartesian grid is described in this paper. The approach is based on a modified version of the Brinkman Penalization method. To avoid oscillations in the vicinity of the body and to simulate shcok-containing flows, a Weighted Essentially Non-Oscillatory scheme is used to discretize the spatial flux derivatives. For high Reynolds number viscous flow, two turbulence models of the two-equation Menter's SST URANS model and a two-equation Detached Eddy Simulation are implemented. Some simple flow examples are given to assess the accuracy of the technique. Finally, a moving grid capability is demonstrated.

  • PDF

Sloshing Flow of Highly-Viscous Fluid in a Rectangular Box (사각용기에서 발생하는 고점성 유체의 슬로싱 유동)

  • park, Jun Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.39-45
    • /
    • 2019
  • A study on the sloshing flow of highly-viscous fluid in a rectangular box was made by both of theoretical approach and experimental visualization method. Assuming a smallness of external forcing to oscillate the container, it was investigated a linear sloshing flow of highly-viscous fluid utilizing asymptotic analysis by Taylor-series expansion as a small parameter Re (≪1) in which Re denotes Reynolds number. The theory predict that, during all cycles of sloshing, a linear shape of free surface will prevail in a bulk zone and it has confirmed in experiment. The relevance of perfect slip boundary condition, adopted in theoretical approach, to the bulk zone flow at the container wall was tested in experiment. It is found that quasi-steady coated thin film, which makes a lubricant layer between bulk flow and solid wall, is generated on the wall and the film makes a role to perfect slip boundary condition.

A solution method for the pressure-based boundary condition in the computation of two-dimensional incompressible viscous flow (2차원 비압축성 점성유동에 나타나는 압력 경계조건의 해결방안)

  • 이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.926-933
    • /
    • 1988
  • A Numerical method has been introduced to handle a pressure-based boundary condition of the incompressible viscous flow field. This method, based on SIMPLER algorithm, has been applied to analyze the flow characteristics within a two-dimensional duct of two-exit, as an example. From this, it is possible to determine the ratio of flow rate through two exits imposed on different static pressure. In order to check the validity of the present method, calculated velocity at the boundary imposed on pressure condition by the use of present method has been transferred to the velocity boundary condition of the conventional numerical method workable only with the velocity-based boundary condition. It is found that the calculated boundary pressure from conventional method are almost identical to those endowed originally. Present method, therefore will be widely applicable to the practical situations specified by the pressure-based boundary condition rather than the velocity one.

Boundary Layer Correction of Hypersonic Wind-tunnel Nozzle Designed by the Methods of Characteristics (특성곡선 해법 설계 극초음속 노즐의 경계층 보정)

  • Kim, So-Yeon;Kim, Sung Don;Jeung, In-Seuck;Lee, Jong-Kuk;Choi, Jeong-Yol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1028-1036
    • /
    • 2014
  • A design procedure is established for hypersonic nozzles by using MOC(Method of Characteristics) and CFD. The inviscid nozzle contour is designed by MOC, then BLC(Boundary Layer Correction) is made by evaluating the boundary layer thickness from viscous CFD analysis. By comparing various definitions of the boundary layer thicknesses, it seems that the boundary layer thickness of 95% speed of the maximum value at the cross section satisfies best the design Mach number. Design procedure is as follow; MOC design, grid generation, inviscid analysis, viscous analysis, BLC and viscous analysis for confirmation and post-processing. All procedures are made automatically by using the batch processing.