• 제목/요약/키워드: viscosity of oil

검색결과 687건 처리시간 0.027초

대체연료를 사용할 경우의 디젤기관의 성능향상에 관한 연구 (Improvement of Diesel Engine Performance for Alternative Fuel Oil)

  • 고장권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제16권5호
    • /
    • pp.97-110
    • /
    • 1992
  • Rape-seed oil has high viscosity and high rubber content like other vegetable oils. When crude rape-seed oil obtained by a general oil extraction process is used in a diesel engine, automization condition during injection is not good and a large amount of combustion product is doposited in a combustion chamber. The improvement of a diesel engine is required to use rape-seed oil as a diesel engine fuel. In this study, the physical and chemical properties and combustion characteristics of rape-seed oil were investigated. The auxiliary aid was developed to improve automization condition and the effect of the auxiliary injection aid on the performance of a diesel engine was determined. The results are as follows. 1) Oil content of rape-seed is 45%. The exraction rate is 33%. The resuls show higher values compared to those of other vegetable oils. 2) The viscosity of rape-seed oil is 50.8 cSt and nearly 14 times of diesel oil viscosity. 3) The heating value and flash point of rape-seed oil are 9720kcal/Kg and 318$^{\circ}C$, respectively. 4) In case rape-seed oil is used as fuel, brake horse power, specific fuel consumption and brake thermal efficiency are compared to those of diesel oil. The results of rape-seed oil show 3.6%, 12.7% and 3.1% higher values. 5) Particle size of injection fuel with the auxiliary injection aid on the performance of a diesel engine was determined. The results are as follows. 1) Oil content of rape-seed is 45%. The extraction rate is 33%. The results show higher values compared to those of other vegetable oils. 2) The viscosity of rape-seed oil is 50.8 cSt and nearly 14 times of diesel oil viscosity. 3) The heating value and flash point of rape-seed oil are 9720kcal/Kg and 318.deg.C, respectively. 4) In case rape-seed oil is used as fuel, brake horse power, specific fuel consumption and brake thermal efficiency are compared to theose of diesel oil. The results of rape-seed oil show 3.6%, 12.7% and 3.1% higher values. 5) Particle size of injection fuel with the auxiliary injection aids is 100.mu.m smaller than that od injection fuel without the aid. 6) Brake horse power and brake thermal efficiency with the auxiliary injection aid increase 5.07% and 6.07%, respectively. However, specific fuel consumption decreases 3.85% with the auxiliary injection aid.

  • PDF

점도 변화에 따른 유류오염 모래의 역학적 특성 (Mechanical Properties of Oil Pollution Sand Due to Changes in the Viscosity of Oil)

  • 홍승서;배규진;김영석
    • 지질공학
    • /
    • 제25권4호
    • /
    • pp.577-585
    • /
    • 2015
  • 본 연구에서는 유류로 오염된 모래의 지반공학적 특성에 대하여 분석하였다. 오염물로 사용한 유류는 점도특성을 고려하여 등유, 원유, 자동차 엔진오일을 선정하였고, 모형지반은 주문진 표준사를 사용하였다. 실내시험은 다짐시험, 투수시험, 직접전단시험을 유류의 오염비율에 따라 수행하였다. 투수시험에서 유류의 함유비가 증가할수록 오염되지 않은 지반에 비해 투수계수가 점진적으로 저하되었다. 내부마찰각은 오염되지 않은 지반보다 상대적으로 감소하였다.

고속 열유체 저어널 베어링에서 단일유체로서의 다등급 엔진 오일과 그 첨가액체들의 혼합물에 대한 성능 비교 (The Performance Comparison between the Mixture of Each Liquid to be Blended and Multi-grade Engine Oil as a Single Fluid in a High Speed Thermo-hydrodynamic Journal Bearing)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제28권2호
    • /
    • pp.81-92
    • /
    • 2012
  • To product multi-grade oil like engine oil, a sort of mineral base oil is mixed with a fundamental additive liquid package and a polymer liquid as viscosity index improver in order to improve the lubricating property of oil. That is, engine oil is the mixture of more than two fluids. In this paper, it will be systematically organized the governing equation describing non-Newtonian thermo-hydrodynamic lubrication related with the mixture of incompressible fluids based on the principle of continuum mechanics. Then, in order to find how the thermal analysis effect on the bearing performance lubricated with the mixture of multi-fluids, it will be compared to the performances between the mixture of each liquid to be blended and multi-grade engine oil as a single fluid in a high speed journal bearing. It is found that, in the case of lower viscosity oil, the difference of pressure distribution between the above two cases turns out to be existed, even if the load capacity is same level.

실리콘 오일 점도에 따른 ABS-like 레진의 트라이볼로지 특성 (Tribological Characteristics of ABS-like Resin According to Silicon Oil Viscosity)

  • 박성현;손준규;우성웅;류의진;이현섭
    • Tribology and Lubricants
    • /
    • 제36권6호
    • /
    • pp.365-370
    • /
    • 2020
  • Recently, additive manufacturing (AM) technology has been applied to various industries such as automotive, aviation, medical, and electronics. Most prior studies are limited to the mechanical properties of printed materials, and few studies are being conducted on their tribological characteristics. However, the friction and wear characteristics of the material should be studied in order to utilize the components manufactured using AM technology as mechanical parts. In this study, the friction and wear characteristics of acrylonitrile-butadiene-styrene (ABS)-like resin printed with stereo lithography apparatus (SLA) 3D printing are evaluated according to the viscosity of silicon oil lubricant using a ball-on-disk experiment. Lubricants with a viscosity of 500, 1000, and 2000 cSt are prepared for the experiment. If silicon oil lubricants are used during the ball-on-disk test, the coefficient of friction (COF) and wear rates are significantly reduced, and the higher the viscosity of the lubricant, the lower will be the COF and wear rates. It is also verified that the temperature of the specimen owing to friction also decreases according to the viscosity of the lubricant. This is because of the silicon oil film thickness, and the higher the viscosity of the lubricant, the thicker will be the oil film. More studies on the tribological characteristics of 3D printing materials and suitable lubricants will be required to use 3D printed parts as mechanical elements.

엔진 베어링에서 점성조건이 유막압력분포에 미치는 영향에 관한 유한요소해석 (Finite Element Analysis to Analyzing the Oil Film Pressure Distribution due to Viscosity Conditions in Engine Bearings)

  • 김청균;한동철
    • Tribology and Lubricants
    • /
    • 제11권1호
    • /
    • pp.12-19
    • /
    • 1995
  • A finite element approach to analyzing the film pressure of engine bearings has been presented based on the viscosity-temperature equations. The calculated results from each viscosity model are compared with each other for various temperature models of the oil film. The FEM results show that the appropriate selection of the viscosity-temperature model is very important factor for analyzing the film pressure distribution of engine bearings.

나노입자를 적용한 냉장고 압축기용 오일의 윤활특성 평가 (Performance Evaluation of Nano-Lubricants at Refrigeration Oil)

  • 이광호;황유진;권래언;이재근;김석로;방선욱
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.184-188
    • /
    • 2008
  • It has been recognized that friction coefficient decreased with decreasing viscosity of oil in lubrication. In general, the more viscosity decreases, the more wear rate increases due to decrease load carrying capacity. It has been proposed that nano particles in oil decrease friction coefficient and wear rate. The purpose of this study is to apply oil of lower viscosity that mix with nano particles at the compressor used in a refrigerator to decrease friction coefficient keeping Load carrying capacity. Mineral oil of 8 cSt were used and mixed with nano particle. Friction coefficient was evaluated by a disk-on-disk tester. As a result, friction coefficient of nano oil decreased by 90% in comparison with raw oil. These results lead us to the conclusion that nano oil is new plan to raise efficiency of the compressor.

  • PDF

EFFECT OF MISALIGNMENT ON THE STATIC CHARACTERISTICS OF 3-LOBE proceeding BEARING

  • Strzelecki, S.;Radulski, W.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.95-96
    • /
    • 2002
  • The operation of proceeding bearing in the conditions of misaligned axis of proceeding and bush leads to the load concentration on the bearing edges causing further mixed lubrication conditions, unstable operation and intensive wear of mating parts. For the design process of proceeding bearing the knowledge of static characteristics determined from the oil film pressure and temperature distribution is very important. For the 3-lobe proceeding bearing, the pressure, temperature and viscosity fields, load capacity, minimum oil film thickness, power loss, oil flow and maximum oil film temperature have been determined by iterative solution of the Reynolds', energy and viscosity equations. The paper introduces the results of theoretical investigations of static characteristics of 3-lobe proceeding bearing operating at misaligned axis of proceeding and bush. An effect of misalignment ratio, length to diameter ratio of the proceeding bearing, the lobe clearance ratio on the static characteristics was investigated. Laminar, adiabatic model of oil film for the solution of Reynolds, energy and viscosity equations was applied.

  • PDF

Influence of Xanthan, Emulsification Temperature, and Environmental Stresses on the Preparation of Water-in-Corn Oil Emulsions Droplets Coated by Polyglycerol Polyricinoleate

  • Surh, Jeong-Hee
    • Food Science and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.299-306
    • /
    • 2009
  • The purpose of this study was to prepare stable water-in-corn oil (W/O) emulsion droplets coated by polyglycerol polyricinoleate (PGPR). W/O emulsions (20 wt% aqueous phase, 80 wt% oil phase containing 8 wt% PGPR) were produced by high pressure homogenization (Emulsions 1), however, appreciable amount of relatively large water droplets (d>$10{\mu}m$) were found. To facilitate droplet disruption, viscosity of each phase was adjusted: (i) increased the viscosity of aqueous phase by adding 0.1 wt% xanthan (Emulsions 2); (ii) decreased the viscosity of oil phase and aqueous phase by heating them separately at $50^{\circ}C$ for 1 hr immediately before emulsification (Emulsions 3). Homogenizing at the elevated temperature clearly led to a smaller water droplet size, whereas xanthan neither improved nor adversely affected on the microstructures of the emulsions. In addition, the Emulsions 3 had good stability to droplet aggregation under shearing stress, thermal processing, and long term storage.

국내 윤활관리 현황분석 및 품질 비교평가 (Comparative Study of the Quality of Automotive Engine Oils Being Marketed)

  • 정충섭;김명희;이현기;강경선;김월중;장영식;심규성
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.359-365
    • /
    • 1999
  • We have evaluated the performance and some physical properties of 25 automotive engine oils (21 domestic and 5 imported products) which are purchased on the market to verify the API(American Petroleum Institute) or ILSAC(International Lubricant Standardization and Approval Committee) certification marks attached on the products and to determine the necessity of the quality control of the engine oils on the market. 12 test items are chosen according to API engine oil specification, which are flash point, pour point, cold cranking simulator apparent viscosity, pumping viscosity, gelation index, HTHS(High Temperature High Shear viscosity), foam, high temperature foam, filterability, volatility, high temperature deposit(TEOST), phosphorus content. We have found one product which did not meet the API specification on gelation index, one on HTHS, four on foam, and one on volatility, which implies that the quality control system is in need to check the fidelity of the certification marks attached on the engine oils being marketed. In addition, this works raises the necessity of the upgrade of the present Korean engine oil specification.

  • PDF

Thermal Stability and Lifetime Prediction of PAG and POE Oils for a Refrigeration System

  • Park, Keun-Seo;Kang, Byung-Ha;Park, Kyoung-Kuhn;Kim, Suk-Hyun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제15권2호
    • /
    • pp.78-83
    • /
    • 2007
  • An experimental study has been carried out to analyze the thermal stability and to estimate the lifetime of refrigerating lubricants. PAG and POE oil are considered as test oils in this study. The viscosity of PAG and POE oil was measured by the vibration type viscometer while temperature is varied periodically in the range of $0^{\circ}C{\sim}100^{\circ}C$. In order to estimate lifetime of PAG and POE oil with temperature, the viscosity was measured while the test temperature of oils was maintained continuously at $180,\;200\;and\;220^{\circ}C$. The lifetime of oils is estimated as the decrease in viscosity change by 15%. The results indicate that the reduction rates of viscosity of PAG and POE oil are less than 5% after 510 temperature variation cycles. However, when the oils are kept at high temperature, it is found that the lifetimes of PAG oil is seen to be 244, 177 and 89 hours at the test temperature of $180,\;200\;and\;220^{\circ}C$, respectively, where as the lifetimes of POE oil are estimated to be 1,744, 1,007 and 334 hours at the temperature of $180,\;200\;and\;220^{\circ}C$, respectively. Thus, the lifetime of POE oil is found to be much longer than that of PAG oil. The lifetime correlations of PAG and POE oil are also obtained by Arrhenius's equation method in this paper.