• Title/Summary/Keyword: viscoplastic response

Search Result 27, Processing Time 0.021 seconds

Viscoplastic response and collapse of 316L stainless steel tubes under cyclic bending

  • Chang, Kao-Hua;Hsu, Chien-Min;Sheu, Shane-Rong;Pan, Wen-Fung
    • Steel and Composite Structures
    • /
    • v.5 no.5
    • /
    • pp.359-374
    • /
    • 2005
  • This paper presents the experimental and theoretical results of the viscoplastic response and collapse of 316L stainless steel tubes subjected to cyclic bending. The tube bending machine and curvature-ovalization measurement apparatus, which was designed by Pan et al. (1998), were used for conducting the cyclic curvature-controlled experiment. Three different curvature-rates were controlled to highlight the characteristic of viscoplastic response and collapse. Next, the endochronic theory and the principle of virtual work were used to simulate the viscoplastic response of 316L stainless steel tubes under cyclic bending. In addition, a proposed theoretical formulation (Lee and Pan 2001) was used to simulate the relationship between the controlled cyclic curvature and the number of cycles to produce buckling under cyclic bending at different curvature-rates (viscoplastic collapse). It has been shown that the theoretical simulations of the response and collapse correlate well with the experimental data.

Seismic Response Analysis at Multi-layered Ground During Large Earthquake (대형지진시 다층지반의 지진응답해석)

  • 김용성
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.55-64
    • /
    • 2002
  • In the present study, in order to apply a cyclic viscoelastic-viscoplastic constitutive model to multi-layered ground conditions during large earthquake, the numerical simulations of the 1995 Hyogoken Nanbu Earthquake at Port Island, Kobe, Japan, were performed by the seismic response analysis. From the seismic response analysis, it was found that the acceleration calculated from the cyclic elasto-viscoplastic model and cyclic viscoelastic-viscoplastic models for clay was in close agreement with the recorded accelerations at the Port Island down-hole array, and the cyclic elastic-viscoplastic and viscoelastic-viscoplastic constitutive models showed little different behavior characteristics near clay layer. Thus, the propriety of viscoplastic model for clay was convinced. Therefore, it can be concluded that a cyclic viscoelastic-viscoplastic constitutive model can give a good description of the amplification and also it showed accurate damping characteristics of clay during large event which induces plastic deformation in large strain range.

Seismic Response Characteristics of Layered Ground Considering Viscoelastic Effects of Clay (점성토의 점탄성 특성을 고려한 층상지반의 지진응답특성)

  • Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.19-26
    • /
    • 2011
  • In order to estimate the viscous effects of clay over a wide range of strain levels, we confirmed the performance of a viscoelastic-viscoplastic constitutive model by simulating cyclic undrained triaxial tests to determine the cyclic strength and deformation characteristics of natural marine clay. The viscoelastic-viscoplastic constitutive model was then incorporated into an effective stress-based seismic response analysis to estimate the effects of an intermediate clay layer on the behavior of sand layers. Seismic response was simulated by the cyclic viscoelastic-viscoplastic constitutive model created with data recorded at Rokko Island, Kobe, Japan. The results show that a cyclic viscoelastic-viscoplastic constitutive model can provide a good description of dynamic behavior including viscoelastic effects, within a small strain range.

Viscoplastic analysis of thin-walled tubes under cyclic bending

  • Pan, Wen-Fung;Hsu, Chien-Min
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.457-471
    • /
    • 1999
  • In this paper, different curvature-rates are controlled to highlight the characteristic of viscoplastic response in cyclic bending tests. The curvature-ovalization apparatus, which was designed by Pan et al. (1998), is used for conducting the curvature-controlled experiments on thin-walled tubular specimens for AISI 304 stainless steel under cyclic bending. The results reveals that the faster the curvature-rate implies, the fast degree of hardening of the metal tube. However, the ovalization of the tube cross-section increases when the curvature-rate increases.

Seismic Response Analysis at Multi-Layered Ground (다층지반의 지진응답해석)

  • Kim, Yong-Seong;Lee, Dal-Won
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.329-332
    • /
    • 2002
  • In the present study, in order to apply a cyclic viscoelastic-viscoplastic constitutive model to multi-layered ground conditions during large earthquake, the numerical simulations of the 1995 Hyogoken Nanbu Earthquake at Port Island, Kobe, Japan, were performed by the seismic respons analysis. From the seismic response analysis, it was verified that a cyclic viscoelastic-viscoplastic constitutive model can give a good description of the damping characteristics of clay accurately during large event which induces plastic deformation in large strain range.

  • PDF

Dynamic Analysis of Sand-Clay Layered Ground Considering Viscous Effect of Clay

  • Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.45-52
    • /
    • 2006
  • A cyclic viscoelastic-viscoplastic constitutive model for clay is incorporated into an effective stress based seismic response analysis to describe viscous effect of clay layer to sand layer during earthquake. The seismic response against main shock of 1995 Hyogoken Nambu Earthquake is analyzed in the present study. Acceleration responses in both clay layer and just upper liquefiable sand layer are damped due to viscous effect of clay. A cyclic viscoelastic-viscoplastic constitutive model for clay was implemented into a FEM code, and $Newmark{\beta}$ method was employed for the time discretization in the finite element formulation. Seismic responses were simulated by numerical method with recorded data at Port Island, Kobe, Japan. As results of this study, it was found that a cyclic viscoelastic-viscoplastic constitutive model can give good description of dynamic behavior characteristics including viscoelastic effect.

Time-dependent and inelastic behaviors of fiber- and particle hybrid composites

  • Kim, Jeong-Sik;Muliana, Anastasia
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.525-539
    • /
    • 2010
  • Polymer matrix composites are widely used in many engineering applications as they can be customized to meet a desired performance while not only maintaining low cost but also reducing weight. Polymers can experience viscoelastic-viscoplastic response when subjected to external loadings. Various reinforcements and fillers are added to polymers which bring out more complexity in analyzing the timedependent response. This study formulates an integrated micromechanical model and finite element (FE) analysis for predicting effective viscoelastic-viscoplastic response of polymer based hybrid composites. The studied hybrid system consists of unidirectional short-fiber reinforcements and a matrix system which is composed of solid spherical particle fillers dispersed in a homogeneous polymer constituent. The goal is to predict effective performance of hybrid systems having different compositions and properties of the fiber, particle, and matrix constituents. A combined Schapery's viscoelastic integral model and Valanis's endochronic viscoplastic model is used for the polymer constituent. The particle and fiber constituents are assumed linear elastic. A previously developed micromechanical model of particle reinforced composite is first used to obtain effective mechanical properties of the matrix systems. The effective properties of the matrix are then integrated to a unit-cell model of short-fiber reinforced composites, which is generated using the FE. The effective properties of the matrix are implemented using a user material subroutine in the FE framework. Limited experimental data and analytical solutions available in the literatures are used for comparisons.

Analysis of Damaged Material Response Using Unified Viscoplastic Constitutive Equations (통합형 점소성구성식을 이용한 손상재료거동해석)

  • Ha Sang Yul;Kim Ki Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.253-261
    • /
    • 2005
  • In decades, a substantial body of work on a unified viscoplastic model which considers the mechanism of plastic deformation and creep deformation has developed. The systematic scheme for numerical analysis of unified model is necessary because the dominant failure mechanism is the defect growth and coalescence in materials. In the present study, the unified viscoplastic model for materials with defects suggested by Suquet and Michel was employed for numerical analysis. The constitutive equations are integrated based on the generalized mid-point rule and implemented into a finite element program (ABAQUS) by means of user-defined subroutine (UMAT). To evaluate the validity of the developed UMAT code and the assessment of the adopted viscoplastic model, the results obtained from the UMAT code was compared with the numerical reference solution and experimental data. The unit cell analysis also has been investigated to study the effect of strain rate, temperature, stress triaxiality and initial defect volume fraction on the growth and coalescence of the defect.

Mechanical Behavior of Nanocrystalline Aluminum (II) : Modeling (나노결정 알루미늄의 기계적 거동 (II) : 모델링)

  • Khan Akhtar S.;Suh Yeong Sung
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.136-138
    • /
    • 2005
  • The responses of nanocrystalline aluminum powder of different grain sizes, was modeled Using, Khan, Huang, and Liang (KHL) viscoplastic model including hi-linear Hall-Petch type, based on experimental measurements. Correlation of strain-rate-dependent stress responses for different grain sizes were in good agreement with the experimental results.

  • PDF

Viscoplastic collapse of titanium alloy tubes under cyclic bending

  • Lee, Kuo-Long;Pan, Wen-Fung
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.315-324
    • /
    • 2001
  • This paper presents the experimetal result on the viscoplastic response and collapse of the titanium alloy tubes subjected to cyclic bending. Based on the capacity of the bending machine, three different curvature-rates were used to highlight the viscoplastic behavior of the titanium alloy tubes. The Curvature-controlled experiments were conducted by the curvature-ovalization measurement apparatus which was designed by Pan et al. (1998). It can be observed from experimental data that the higher the applied curvature-rate, the greater is the degree of hardening of titanium alloy tube. However, the higher the applied curvature-rate, the greater is the degree of ovalization of tube cross-section. Furthermore, due to the greater degree of the ovalization of tube cross-section for higher curvature-rates under cyclic bending, the number of cycles to produce buckling is correspondingly reduced. Finally, the theoretical formulation, proposed by Pan and Her (1998), was modified so that it can be used for simulating the relationship between the controlled curvature and the number of cycles to produce buckling for titanium alloy tubes under cyclic bending with different curvature-rates. The theoretical simulation was compared with the experimental test data. Good agreement between the experimental and theoretical results has been achieved.