• Title/Summary/Keyword: viscometer

Search Result 247, Processing Time 0.024 seconds

Effect of Solid Content and Particle Size on the Flow Properties of Molten Chocolate (고형성분의 농도와 입도가 액상 초코렛의 유동특성에 미치는 영향)

  • Kim, Do-Un;Yoo, Myung-Shik;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.75-79
    • /
    • 1989
  • The rheological properties of sugar and cocoa particle suspensions in cocoa butter under molten condition were analyzed with Haake rotationary viscometer. Both suspensions had yield value and showed rheopexy at low shear rate and thixotropy at high shear rate. Flow behaviors of the suspensions were analyzed with modified Casson model. Casson viscosity and yield value increased with increasing the concentration of sugar and cocoa particles. There was an obvious dependence of the Casson viscosity and yield value on the particle size distributions that was represented by the Sauter mean diameter of the particles. Casson viscosity and yield value of cocoa butter-sugar suspension increased with increasing the fineness of sugar particle crystal. With increasing the fineness of cocoa particle a decreasing Casson viscosity of cocoa butter-cocoa particle suspension was achieved, but the yield value did not change significantly with cocoa particle size. Therefore, it was predicted that the best rheological properties of chocolate could be obtained with the combination of coarse ground sugar $(d=36.30{\mu}m)$ and fine ground cocoa particle $(d=14.81{\mu}m)$ within the studied range.

  • PDF

Rheological and Thermal Properties of Acrylonitrile-Acrylamide Copolymers: Influence of Polymerization Temperature

  • Wu Xueping;Lu Chunxiang;Wu Gangping;Zhang Rui;Ling Licheng
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.103-107
    • /
    • 2005
  • An attempt was made to correlate the polymerization temperature and rheological and thermal properties of acrylonitrile (AN)-acrylamide (AM) copolymers. The copolymers were synthesized at different polymerization temperature. The copolymer structure was characterized by gel permeation chromatography (GPC) and Infrared spectrum (IR). The rheological and thermal properties were investigated by a viscometer and differential scanning calorimeter-thermogrametric (DSC-TG) analysis, respectively. When the polymerization temperature increased from $41^{\circ}C\;to\;65^{\circ}C$, the molecular weight $(\bar{M}_w)$ of copolymers decreased from 1,090,000 to 250,000, while its conversion increased from $18\%\;to\;63\%$, and the polymer composition changed slightly. To meet the requirements of carbon fibers, the rheological and thermal properties of products were also investigated. It was found that the relationship between viscosity and $\bar{M}_w$ was nonlinear and the viscosity index (n) decreased from 3.13 to 2.69, when the solution temperature increased from $30^{\circ}C\;to\;65^{\circ}C$. This suggests the dependence of viscosity upon $\bar{M}_w$ is higher at lower solution temperature. According to the result of activation energy, the sensivity of viscosity to solution temperature is higher for AN-AM copolymers synthesized at higher polymerization temperature. The result of thermal analysis shows that the copolymers obtained at higher polymerization temperature are easier to cyclization evidenced from lower initiation temperature. The weight loss behavior changed irregularly with polymerization temperature due to irregular change of liberation heat.

Morphology and Mechanical Properties of Waste PVC Blends (II)- The Relationship between Rheology and Morphology of Waste PVC/PE Blends (폐폴리(염화 비닐)계 고분자 블렌드의 구조 및 물성 연구(II)-폐폴리(염화 비닐)/폴리에틸렌 고분자 블렌드의 형태학 및 유변학적 거동)

  • 유영재;박재찬;원종찬;최길영;이재흥
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.460-467
    • /
    • 2004
  • The polymer blends of waste poly(vinyl chloride) (RPVC) and waste polyethylene (RPE) were prepared by melt mixing. Their morphologies and rheological properties were investigated and torque changes were also measured. Comparing the torques calculated by the log additivity rule with measured torque changes, the polymer blends showed the large negative deviation behavior (NDB) due to their incompatibility. The shear viscosities of the blends decreased with increasing shear rates, showing shear thinning behavior. The shear viscosity of the blends with compatibilizer was larger than that of the blends without compatibilizer. SEM micrographs of the strands after measurement showed that the domain size of the blends was slightly enlarged with increasing the shear rate. Also, RPVC domain size was larger in the core-sections of the strands from capillary viscometer than in the surface region.

Study on the Thermal Conductivity and Viscosity of Ethanol with Carbon Nanotubes for the Development of a Heat Pipe Working Fluid (히트파이프 작동유체 개발을 위한 에탄올-탄소나노튜브 나노유체의 열전도도 및 점도 특성 연구)

  • An, Eoung-Jin;Park, Sung-Seek;Park, Yoon-Chul;Kim, Jong-Yoon;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.9-16
    • /
    • 2012
  • Nanofluids using Carbon Nanotubes have a excellent thermal characteristic. In this study, for increasing the efficiency of solar collector, the thermal conductivity and viscosity of Ethanol-Oxidized Multi-walled Carbon Nanofluids were measured. Nanofluids were manufactured by ultra-sonic dispersing Oxidized Multi-walled Carbon Nanotubes(OMWCNTs) in ethanol at the rates of 0.0005 ~ 0.1 vol%. The thermal conductivity and viscosity of manufactured nanofluids were measured at the low temperature($10^{\circ}C$), the room temperature($25^{\circ}C$) and the high temperature($70^{\circ}C$). For measuring thermal conductivity and viscosity, we used transient hot-wire method and rotational digital viscometer, respectively. As a result, under given temperature conditions, thermal conductivity of the 0.1 vol% nanofluids improved 33.74% ($10^{\circ}C$), 33.14% ($25^{\circ}C$) and 32.36% ($70^{\circ}C$), and its viscosity increased by 37.93% ($10^{\circ}C$), 31.92% ($25^{\circ}C$) and 29.42% ($70^{\circ}C$) than the base fluids.

A Study of the Viscosity of Some Electrolytic Solutions and Its Concentration Function (電解質溶液의 粘度係數의 測定과 濃度關係에 對한 考察)

  • Sakong, Yull;Hwang, Jung-Eui
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 1964
  • The viscosities of strong electrolytic solutions, such as KCl, KI and NaI have been measured over a fairy wide range of concentration variation (from 0.00002 to 3.7M). It was hoped that a study of the data in the light of modern theories on solution might reveal new relation between viscosity and surface tension of electrolytic solution. To secure more accurate measurements of viscosity and surface tension of the solutions, Ostwald viscometer was made with pyrex glass and modified the timing system for the transit of the meniscus with a new electronics system and with a pulse counter. As the experimental data obtained were in good agreement with the Jone's values, Jones-Dole equations for the electrolytic solutions were deduced, ${\eta}KCl\;=\;1\;+\;0.0052{\sqrt{c}}\;-\;0.01612c\;+\;0.00808c^2\;at\;30^{\circ}C$ ${\eta}KI\;=\;1\;+\;0.0220{\sqrt{c}}\;-\;0.01290c\;+\;0.02988c^2\;at\;25^{\circ}C$${\eta}Na\; =\;1\;+\;0.0240{\sqrt{c}}\;-\;0.0640c\;+\;0.03268c^2\;at\;25^{\circ}C$Gruneisen effect appeared in the dilute solution, whereas anti-Gruneisen effect was found for the extremely dilute solution. No satisfactory interpretation for the variation of the viscosity with concentration can be found at the present.

  • PDF

Physical Properties of E-glass Fiber According to Fiberizing Temperature (섬유화 온도 변화에 따른 E-glass fiber의 물리적 특성)

  • Lee, Ji-Sun;Lee, MiJai;Lim, Tae-Young;Lee, Youngjin;Jeon, Dae-Woo;Hyun, Soong-Keun;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.43-47
    • /
    • 2017
  • E (Electric) -glass fibers are the most widely used glass fibers, taking up 90 % of the long glass fiber market. However, very few papers have appeared on the physical characteristics of E-glass fibers and how they depend on the fiberizing temperature of fiber spinning. Glass fiber was fabricated via continuous spinning process using bulk E-glass. In order to fabricate the E-glass specimen, raw materials were put into a Pt crucible and melted at $1550^{\circ}C$ for 2hrs; mixture was then annealed at $621{\pm}10^{\circ}C$ for 2hrs. The transmittance and adaptable temperature for spinning of the bulk marble glass were characterized using a UV-visible spectrometer and a viscometer. Continuous spinning was carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of $1175{\sim}1250^{\circ}C$, while the winder speed was fixed at 500 rpm. Subsequently we investigated the physical properties of the E-glass fiber. The average diameter of the synthesized glass fiber was measured by optical microscope. The mechanical properties of the fiber were confirmed using a UTM (universal materials testing machine); the maximum tensile strength was measured and found to be $1843{\pm}449MPa$ at $1225^{\circ}C$.

Effect of Heating Temperature on Viscosity of Starch Dough (전분반죽의 점도에 미치는 가열온도의 영향)

  • Lee, Boo-Yong;Lee, Chang-Ho;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.593-597
    • /
    • 1995
  • To measure theological properties of the starch dough, an Extrusion Capillary Viscometer(ECV) cell was self-made and attached to Instron machine(Model 1140). Apparent viscosities of corn and waxy corn starch doughs were measured and their gelatinization degrees were determined by enzymatic analysis. The effects of heating temperature on the viscosity of starch dough with $36{\sim}52%$ moisture contents were examined in terms of Arrhenius equation. The activation emergy(Ea) of the dough viscosity from the effect of heating temperatures changed from negative(-) to positive(+), as the moisture content increased from 44% to 48% in the corn starch dough and from 44% to 44% in the waxy corn starch dough.

  • PDF

Flow Properties of Red Flower Cabbage Pigment Solutions (꽃양배추 색소 추출액의 유동특성)

  • Rhim, Jong-Whan;Lee, Jung-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.221-225
    • /
    • 2001
  • Flow properties of red flower cabbage pigment solutions were determined over a wide range of temperatures ($20-50^{\circ}C$) and soluble solid concentrations (1-65%) using a cone and plate rotational viscometer. Flow properties of the pigment solutions were adequately described by the simple power law model. Within the tested ranges of concentration, temperature and shear rate, the flow behavior index (n) and the consistency index (K) of the solutions were in the ranges of 0.841-0.998 and $0.008-31.525\;Pa{\cdot}s^n$, respectively. The effect of temperature on the apparent viscosity of the solutions followed an Arrhenius type relationship. Activation energy of flow varied from 9.36 to 52.48 kJ/mol depending on the solid concentration and shear rate. The combined effect of temperature and concentration on the apparent viscosity at the shear rate of $100\;s^{-1}$ could be represented by a single equation as ${\ln}\;{\eta}_a\;=\;6.11\;-\;3103.94(1/T)\;-\;0.03C$.

  • PDF

Performance Change of Application Devices Caused by Magnetorheological Particle Corrosion (자기유변 입자 부식에 따른 응용장치의 성능 변화)

  • Han, Young-Min;Choi, Seong-Cheol
    • Journal of Digital Convergence
    • /
    • v.14 no.12
    • /
    • pp.193-199
    • /
    • 2016
  • MR(magnetorheological) devices for vehicle applications requires the consistent control performance and the reliable operation. However, the corrosion of iron particles consisting the MR fluid can significantly affect on MR properties. This paper presents an effect of the MR particle corrosion on the performance of MR fluids such as shear stress magnitude which is directly concerned with control performance. As a first step, MR particles are corroded by water-calcium chloride solution. The resulting MR particles are examined by scanning electron microscope (SEM) and their molar ratios are analyzed by the energy dispersive X-ray analysis (EDAX). By dispersing the corroded MR particles into silicone oil, the corroded MR fluid is synthesized for evaluation of MR effect change. A rotational viscometer is adopted to measure shear stress magnitude. Finally, it is demonstrated how much the corrosion affect on performances by comparing the normal MR fluid to the corroded MR fluid, from which performance investigation of the MR devices containing the corroded MR particles will be studied in the second phase of this study.

The Behavior of Electrolytes in Nonaqueous Solutions (IV). Relative Viscosities and Osmotic Coefficients of Alkaline Metal Iodides (물아닌 용액에서의 전해질의 행동에 관한 연구 (제4보). 요오드화알칼리금속의 상대점도와 삼투계수)

  • Si-Joong Kim;Jin-Ho Kim;Kyu-Seong Choi
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.349-354
    • /
    • 1984
  • The relative viscosities and the osmotic coefficients of alkaline metal iodides (NaI, KI, RbI, CsI) in methanol, ethanol, dimethylsulfoxide (DMSO), and sulfolane (TMS) have been measured by Ubbelohde viscometer and vapor pressure osmometry at 45 ∼ $120^{\circ}C.$ The order of A and B coefficients in viscosity for alkaline metal iodides are MeOH > EtOH > TMS > DMSO, and TMS > EtOH > DMSO > MeOH. dB/dT values for the alkaline metal iodides are in the order of NaI > KI > RbI > CsI in the protic solvents, while those for the aprotic solvents are in the reverse order. The order of the osmotic coefficients for the alkaline metal iodides is EtOH > DMSO > MeOH > TMS.

  • PDF