• 제목/요약/키워드: viscoelastic properties

검색결과 435건 처리시간 0.026초

시트 동특성을 고려한 인체 진동 해석 (Human Body Vibration Analysis under Consideration of Seat Dynamic Characteristics)

  • 강주석
    • 한국산학기술학회논문지
    • /
    • 제13권12호
    • /
    • pp.5689-5695
    • /
    • 2012
  • 본 연구에서는 차량에 적용되는 시트 재질인 폴리우레탄 폼의 점탄성 특성을 고려하여 시트와 인체의 진동특성을 시험 및 수치해석 방법을 이용하여 분석하였다. 압축 시험을 통해 폴리우레탄 폼의 점탄성 특성인 비선형성과 준-정역학적 특성을 구하였다. 또한 컨벌루션 적분법 및 비선형 강성 모델을 이용하여 폴리우레탄 폼의 점탄성 특성을 수학적으로 모델링하였다. 시트의 승차감 기여도를 분석하기 위하여 시트의 동역학 모델과 ISO5982의 표준 인체 수직진동 모델을 이용하여 수직 진동모델을 구성하고 관련 운동방정식을 유도하였다. 비선형 운동방정식은 Runge-Kutta 적분법을 이용하여 수치해석 시뮬레이션을 수행하였다. 철도차량의 차체 바닥에서 측정한 진동가속도 입력에 대한 시트와 인체의 응답 특성을 분석하고 시트 설계 파라미터에 대한 승차감 지수 값들의 변화를 분석하여 시트 설계에 대한 방법론을 제시하고자 한다.

점탄성 유체해석용 RANS 기반 난류 모델 개발 및 검증 (Development and Evaluation of RANS based Turbulence Model for Viscoelastic Fluid)

  • 노경철
    • 한국산학기술학회논문지
    • /
    • 제18권3호
    • /
    • pp.545-550
    • /
    • 2017
  • 대동맥이나 협착된 경동맥에서는 심장수축기에 간헐적으로 난류현상이 발생하고 있으며, 혈액의 점성특성으로 인해 기존 난류모델로는 정확한 해석이 어려운 실정이다. 혈류는 점탄성 유체의 성질을 가지고 있어 유체의 전단 변형률 증가에 따라 점도가 감소하는 점탄성 유체이며, 이러한 점탄성 유체는 난류 유동시 저항 감소 현상이 발생한다. 기존의 난류해석 모델들은 점성변화가 없는 뉴턴 유체에 적합한 모델들이 대부분이기 때문에, 점탄성 유체의 저항 감소 현상을 고려한 비뉴턴 유체 해석에 적합한 난류 모델개발이 필요하다. 본 논문은 난류 모델 가운데 수렴성이 좋고 해석시간이 짧은 표준 $k-{\varepsilon}$ 모델을 기반으로 저항 완충 함수를 이용하여 비뉴턴 유체의 저항감소 현상을 해석할 수 있는 수정된 난류모델을 제시하였으며, 이를 기존 난류모델들과 비교하여 제시된 난류 모델을 검증하였다. 새로 제시된 수정된 난류모델은 벽함수 및 점성저층을 고려하지 않았기 때문에 해석시간이 대폭적으로 감소하였으며, 적은 격자수를 이용하여 효율적으로 비뉴턴 유체의 난류 현상을 해석할 수 있기 때문에 향후 혈류해석 및 점탄성유체 해석에 적용할 예정이다.

Porosity-dependent vibration investigation of functionally graded carbon nanotube-reinforced composite beam

  • Abdulmajeed M. Alsubaie;Ibrahim Alfaqih;Mohammed A. Al-Osta;Abdelouahed Tounsi;Abdelbaki Chikh;Ismail M. Mudhaffar;Saeed Tahir
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.75-85
    • /
    • 2023
  • This work utilizes simplified higher-order shear deformation beam theory (HSDBT) to investigate the vibration response for functionally graded carbon nanotube-reinforced composite (CNTRC) beam. Novel to this work, single-walled carbon nanotubes (SWCNTs) are distributed and aligned in a matrix of polymer throughout the beam, resting on a viscoelastic foundation. Four un-similar patterns of reinforcement distribution functions are investigated for the CNTRC beam. Porosity is another consideration taken into account due to its significant effect on functionally graded materials (FGMs) properties. Three types of uneven porosity distributions are studied in this study. The damping coefficient and Winkler's and Pasternak's parameters are considered in investigating the viscosity effect on the foundation. Moreover, the impact of different parameters on the vibration of the CNTRC beam supported by a viscoelastic foundation is discussed. A comparison to other works is made to validate numerical results in addition to analytical discussions. The findings indicate that incorporating a damping coefficient can improve the vibration performance, especially when the spring constant factors are raised. Additionally, it has been noted that the fundamental frequency of a beam increases as the porosity coefficient increases, indicating that porosity may have a significant impact on the vibrational characteristics of beams.

A multiscale creep model as basis for simulation of early-age concrete behavior

  • Pichler, Ch.;Lackner, R.
    • Computers and Concrete
    • /
    • 제5권4호
    • /
    • pp.295-328
    • /
    • 2008
  • A previously published multiscale model for early-age cement-based materials [Pichler, et al.2007. "A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials." Engineering Fracture Mechanics, 74, 34-58] is extended towards upscaling of viscoelastic properties. The obtained model links macroscopic behavior, i.e., creep compliance of concrete samples, to the composition of concrete at finer scales and the (supposedly) intrinsic material properties of distinct phases at these scales. Whereas finer-scale composition (and its history) is accessible through recently developed hydration models for the main clinker phases in ordinary Portland cement (OPC), viscous properties of the creep active constituent at finer scales, i.e., calcium-silicate-hydrates (CSH) are identified from macroscopic creep tests using the proposed multiscale model. The proposed multiscale model is assessed by different concrete creep tests reported in the open literature. Moreover, the model prediction is compared to a commonly used macroscopic creep model, the so-called B3 model.

Effect of Polyolic Plasticizers on Rheological and Thermal Properties of Zein Resins

  • Oromiehie, A.R.;Ghanbarzadeh, B.;Musavi, S.M.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.360-360
    • /
    • 2006
  • Zein protein is one of the best biopolymer for edible film making and polyols are convenient plasticizers for biopolymers. Sorbitol, glycerol and manitol at three levels (0.5, 0.7, 1g/g of zein) were used as plasticizers. Rheological and thermal properties of zein resins were studied for determining their plasticization effectiveness. Sorbitol and glycerol had good plasticizing effects and could decrease viscoelastic modulus of zein resins considerably, but manitol was not as effective as them. Effects of plasticizers on thermal properties of resins were investigated by DSC at -100 to $150^{\circ}C$. No crystallization and melting peaks related to zein resin and plasticizers were observed. Thermograms showed that polyolic plasticizers and zein resin remained a homogeneous material throughout the cooling and heating cycles.

  • PDF

인공 관절 설계를 위한 바이오미메틱 복합재료에 관한 연구 (A Study on Biomimetic Composite for Design of Artificial Hip Joint)

  • 김명욱;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.234-238
    • /
    • 1999
  • This study suggests the design of the functionally gradient composite, [0/90/0/core]$_s$ cross-ply laminate, to prevent stress concentration induced from the difference of rigidity between the bone and the artificial hip joint and to reinforce the wear property of the surface and the expectation of their mechanical properties. First, the four-point bending test is done about wet bones and dry bones to know the mechanical properties of the cortical bones. In result, the wet bone shows the viscoelastic behavior and the dry bone shows the elastic behavior. Moreover, we expect the properties of the proposed gradient composites as a function of carbon fiber volume fraction in each layer to apply Halpin-Tsai equation, CLPT(classical laminate plate theory), and Bernoulli beam theory etc. and decide the thickness ratio of each lamina in order to match Young's modulus of the anisotropic cortical bone with the proposed gradient composites.

  • PDF

광디스크 기판 성형시 발생하는 복굴절의 최소화를 위한 이론적 연구 (An Theoretical Investigation on the Minimization of Birefringence Distribution in Optical Disk Substrate)

  • 김종성;강신일
    • 소성∙가공
    • /
    • 제9권2호
    • /
    • pp.103-111
    • /
    • 2000
  • It is necessary to improve mechanical and optical properties in the optical disk substrates as the information storage density using short wavelength laser are being developed. The birefringence distribution is regarded as one of the most important optical properties for optical disk. In the present study, the birefringence distrubution is calculated using the Leonov model for viscoelastic constitutive equations and Cross/WLF model for viscosity approximation. The effects of processing conditions upon the development of birefringence discosity approximation. The effects of processing conditions upon the development of birefringence distribution in the optical disk were examined theoretically. It was found that the values of the birefringence distributions were very sensitive to the mold wall temperature history which minimizes the birefringence distribution. The analytical results showed the possibility of improving mechanical and optical properties in the optical disk substrates by active control of the mold wall temperature history.

  • PDF

자동차 내장용 분무형 제진재의 제진특성 (Damping Properties of the Spray Type Vibration Reduction Material for the Use of the Automotive Interior Parts)

  • 윤주호;윤여성;김영명;김의용;김종수
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.138-146
    • /
    • 2002
  • The new type of vibration reduction material far an automotive interior, which is spray-type liquid material, is developed in this study The new material has better damping property and lower mass density than other damping materials, for example asphalt sheet. It can be sprayed by an automatic robot, so it is expected to improve productivity and cut down manpower. And it solves a poor adhesion problem and makes an automotive to be lightweight by optimizing spray process. So, It is a next generation automotive vibration reduction material. In this paper, the chemical process for making the new damping materials is described. And then, the damping properties of the vibration reduction materials are analyzed by modal testing of damping treatment specimens. The new vibration reduction materials have good damping properties than asphalt sheet in the experimental results.

Milk Protein-Stabilized Emulsion Delivery System and Its Application to Foods

  • Ha, Ho-Kyung;Lee, Won-Jae
    • Journal of Dairy Science and Biotechnology
    • /
    • 제38권4호
    • /
    • pp.189-196
    • /
    • 2020
  • Milk proteins, such as casein and whey protein, exhibit significant potential as natural emulsifiers for the preparation and stabilization of emulsion-based delivery systems. This can be attributed to their unique functional properties, such as the amphiphilic nature, GRAS (generally recognized as safe) status, high nutritional value, and viscoelastic film-forming ability around oil droplets. In addition, milk protein has been used as a coating material in emulsion-based delivery systems to protect bioactive compounds during food processing and storage owing to its unique functional properties. These properties include the ability to bind lipophilic bioactive compounds and antioxidant activity. In this review, we present the use of milk proteins as emulsifiers for the formation of emulsions and food applications of milk protein-stabilized emulsion delivery systems.