• 제목/요약/키워드: viscoelastic model

검색결과 495건 처리시간 0.027초

최적화 기법을 이용한 점탄성물질의 유리미분모델 물성값 추정 (Identification of fractional-derivative-model parameters of viscoelastic materials using an optimization technique)

  • 김선용;이두호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1235-1242
    • /
    • 2006
  • Viscoelastic damping materials are widely used to reduce noise and vibration because of its low cost and easy implementation, for examples, on the body structure of passenger cars, air planes, electric appliances and ships. To design the damped structures, the material property such as elastic modulus and loss factor is essential information. The four-parameter fractional derivative model well describes the nonlinear dynamic characteristics of the viscoelastic damping materials with respect to both frequency and temperature with fewer parameters than conventional spring-dashpot models. However the identification procedure of the four-parameter is very time-consuming one. An efficient identification procedure of the four-parameters is proposed by using an FE model and a gradient-based numerical search algorithm. The identification procedure goes two sequential steps to make measured FRFs coincident with simulated FRFs: the first one is a peak alignment step and the second one is an amplitude adjustment. A numerical example shows that the proposed method is efficient and robust in identifying the viscoelastic material parameters of fractional derivative model.

  • PDF

Analysis of an electrically actuated fractional model of viscoelastic microbeams

  • Bahraini, Seyed Masoud Sotoodeh;Eghtesad, Mohammad;Farid, Mehrdad;Ghavanloo, Esmaeal
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.937-956
    • /
    • 2014
  • The MEMS structures usually are made from silicon; consideration of the viscoelastic effect in microbeams duo to the phenomena of silicon creep is necessary. Application of the fractional model of microbeams made from viscoelastic materials is studied in this paper. Quasi-static and dynamical responses of an electrically actuated viscoelastic microbeam are investigated. For this purpose, a nonlinear finite element formulation of viscoelastic beams in combination with the fractional derivative constitutive equations is elucidated. The four-parameter fractional derivative model is used to describe the constitutive equations. The electric force acting on the microbeam is introduced and numerical methods for solving the nonlinear algebraic equation of quasi-static response and nonlinear equation of motion of dynamical response are described. The deflected configurations of a microbeam for different purely DC voltages and the tip displacement of the microbeam under a combined DC and AC voltages are presented. The validity of the present analysis is confirmed by comparing the results with those of the corresponding cases available in the literature.

Dynamic Analysis of Sand-Clay Layered Ground Considering Viscous Effect of Clay

  • Kim, Yong-Seong
    • 한국농공학회논문집
    • /
    • 제48권7호
    • /
    • pp.45-52
    • /
    • 2006
  • A cyclic viscoelastic-viscoplastic constitutive model for clay is incorporated into an effective stress based seismic response analysis to describe viscous effect of clay layer to sand layer during earthquake. The seismic response against main shock of 1995 Hyogoken Nambu Earthquake is analyzed in the present study. Acceleration responses in both clay layer and just upper liquefiable sand layer are damped due to viscous effect of clay. A cyclic viscoelastic-viscoplastic constitutive model for clay was implemented into a FEM code, and $Newmark{\beta}$ method was employed for the time discretization in the finite element formulation. Seismic responses were simulated by numerical method with recorded data at Port Island, Kobe, Japan. As results of this study, it was found that a cyclic viscoelastic-viscoplastic constitutive model can give good description of dynamic behavior characteristics including viscoelastic effect.

부력의 영향을 포함한 점탄성 유체의 열전달에 관한 수치해석 (Numerical Analysis on Heat Transfer of Viscoelastic Fluid including Buoyancy Effect)

  • 손창현;안성태;장재환
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.495-503
    • /
    • 2000
  • The present numerical study investigates flow characteristics and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The combined effect of temperature-dependent viscosity, buoyancy and secondary flow caused by second normal stress difference are all considered. The Reiner-Rivlin model is used as a viscoelastic fluid model to simulate the secondary flow and temperature-dependent viscosity model is adopted. Three types of thermal boundary conditions involving different combinations of heated walls and adiabatic walls are considered in this study. Calculated Nusselt numbers are in good agreement with experimental results in both the thermal developing and thermally developed regions. The heat transfer enhancement can be explained by the combined viscoelasticity-driven secondary flow, buoyancy-induced secondary flow and temperature-dependent viscosity.

Computational viscoelastic modeling of strain rate effect on recycled aggregate concrete

  • Suthee Piyaphipat;Boonchai Phungpaingam;Kamtornkiat Musiket;Yunping Xi
    • Computers and Concrete
    • /
    • 제32권4호
    • /
    • pp.383-392
    • /
    • 2023
  • The mechanical properties of Recycled Aggregate Concrete (RAC) with 100 percent Recycled Coarse Aggregate (RCA) under loading rates were investigated in depth. The theoretical model was validated utilizing the RAC elastic modulus obtained from cylindrical specimens subjected to various strain rates. Viscoelastic theories have traditionally been used to describe creep and relaxation of viscoelastic materials at low strain rates. In this study, viscoelastic theories were extended to the time domain of high strain rates. The theory proposed was known as reversed viscoelastic theory. Normalized Dirichlet-Prony theory was used as an illustration, and its parameters were determined. Comparing the predicted results to the experimental data revealed a high level of concordance. This methodology demonstrated its ability to characterize the strain rate effect for viscoelastic materials, as well as its applicability for determining not only the elastic modulus for viscoelastic materials, but also their shear and bulk moduli.

Thermo-electro-elastic nonlinear stability analysis of viscoelastic double-piezo nanoplates under magnetic field

  • Ebrahimi, Farzad;Hosseini, S. Hamed S.;Selvamani, Rajendran
    • Structural Engineering and Mechanics
    • /
    • 제73권5호
    • /
    • pp.565-584
    • /
    • 2020
  • The nonlinear thermo-electro-elastic buckling behavior of viscoelastic nanoplates under magnetic field is investigated based on nonlocal elasticity theory. Employing nonlinear strain-displacement relations, the geometrical nonlinearity is modeled while governing equations are derived through Hamilton's principle and they are solved applying semi-analytical generalized differential quadrature (GDQ) method. Eringen's nonlocal elasticity theory considers the effect of small size, which enables the present model to become effective in the analysis and design of nano-sensors and nano actuators. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. It is demonstrated that the GDQ method has high precision and computational efficiency in the buckling analysis of viscoelastic nanoplates. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as electric voltage, small scale effects, elastomeric medium, magnetic field, temperature effects, the viscidity and aspect ratio of the nanoplate on its nonlinear buckling characteristics. It is explicitly shown that the thermo-electro-elastic nonlinear buckling behavior of viscoelastic nanoplates is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of viscoelastic nanoplates as fundamental elements in nanoelectromechanical systems.

Nonlinear response of a resonant viscoelastic microbeam under an electrical actuation

  • Zamanian, M.;Khadem, S.E.;Mahmoodi, S.N.
    • Structural Engineering and Mechanics
    • /
    • 제35권4호
    • /
    • pp.387-407
    • /
    • 2010
  • In this paper, using perturbation and Galerkin method, the response of a resonant viscoelastic microbeam to an electric actuation is obtained. The microbeam is under axial load and electrical load. It is assumed that midplane is stretched, when the beam is deflected. The equation of motion is derived using the Newton's second law. The viscoelastic model is taken to be the Kelvin-Voigt model. In the first section, the static deflection is obtained using the Galerkin method. Exact linear symmetric mode shape of a straight beam and its deflection function under constant transverse load are used as admissible functions. So, an analytical expression that describes the static deflection at all points is obtained. Comparing the result with previous research show that using deflection function as admissible function decreases the computation errors and previous calculations volume. In the second section, the response of a microbeam resonator system under primary and secondary resonance excitation has been obtained by analytical multiple scale perturbation method combined with the Galerkin method. It is shown, that a small amount of viscoelastic damping has an important effect and causes to decrease the maximum amplitude of response, and to shift the resonance frequency. Also, it shown, that an increase of the DC voltage, ratio of the air gap to the microbeam thickness, tensile axial load, would increase the effect of viscoelastic damping, and an increase of the compressive axial load would decrease the effect of viscoelastic damping.

Delamination of non-linear viscoelastic beams under bending in the plane of layers

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • 제12권4호
    • /
    • pp.297-313
    • /
    • 2023
  • This paper deals with delamination analysis of non-linear viscoelastic multilayered beam subjected to bending in the plane of the layers. For this purpose, first, a non-linear viscoelastic model is presented. In order to take into account the non-linear viscoelastic behaviour, a non-linear spring and a non-linear dashpot are assembled in series with a linear spring connected in parallel to a linear dashpot. The behaviours of the non-linear spring and dashpot are described by applying non-linear stress-strain and stress-rate of strain relationships, respectively. The constitutive law of the model is derived. Due to the non-linear spring and dashpot, the constitutive law is non-linear. This law is used for describing the time-dependent mechanical behaviour of the beam under consideration. The material properties involved in the constitutive law vary along the beam length due to the continuous material inhomogeneity of the layers. Solution of the strain energy release rate for the delamination is obtained by analyzing the balance of the energy with considering of the non-linear viscoelastic behaviour. The strain energy release rate is found also by using the complementary strain energy for verification. A parametric study is carried-out by using the solution obtained. The solutions derived and the results obtained help to understand the time-dependent delamination of non-linear viscoelastic beams under loading in the plane of layers.

Dynamic characteristics of viscoelastic nanobeams including cutouts

  • Rabab A. Shanab;Norhan A. Mohamed;Mohamed A. Eltaher;Alaa A. Abdelrahman
    • Advances in nano research
    • /
    • 제14권1호
    • /
    • pp.45-65
    • /
    • 2023
  • This paper aimed to investigate the nonclassical size dependent free vibration behavior of regularly squared cutout viscoelastic nanobeams. The nonlocal strain gradient elasticity theory is modified and adopted to incorporate the viscoelasticity effect. The Kelvin Voigt viscoelastic model is adopted to model the linear viscoelastic constitutive response. To explore the influence of shear deformation effect due to cutout, both Euler Bernoulli and Timoshenko beams theories are considered. The Hamilton principle is utilized to derive the dynamic equations of motion incorporating viscoelasticity and size dependent effects. Closed form solutions for the resonant frequencies for both perforated Euler Bernoulli nanobeams (PEBNB) and perforated Timoshenko nanobeams (PTNB) are derived considering different boundary conditions. The developed procedure is verified by comparing the obtained results with the available results in the literature. Parametric studies are conducted to show the influence of the material damping, the perforation, the material and the geometrical parameters as well as the boundary and loading conditions on the dynamic behavior of viscoelastic perforated nanobeams. The proposed procedure and the obtained results are supportive in the analysis and design of perforated viscoelastic NEMS structures.

모세관 다이에서 고무 복합체의 점탄성 거동에 대한 컴퓨터 모사 (Computer Simulation of Viscoelastic Flow in a Capillary Die for Rubber Compounds)

  • 박동명;김학주;윤재룡;류민영
    • Elastomers and Composites
    • /
    • 제41권4호
    • /
    • pp.223-230
    • /
    • 2006
  • 고무복합체는 높은 점탄성 성질을 보이는데 압출성형 시 이 점탄성 성질 때문에 압출물이 팽창하게 된다. 그리고 팽윤양은 공정 조건에 따라서 변한다. 점탄성 성질에서 탄성 부분은 압출물의 팽창에 있어서 중요한 역할을 한다. 본 논문은 모세관 다이에서 여러 가지 고무복합체에 따른 다이팽윤을 알아보기 위해 상용 CFD 프로그램인 Polyflow를 사용하여 해석을 수행하였다. 컴퓨터 모사에서는 비선형 미분 점탄성 모델인 Phan-Thien-Tanner(PTT) 모델을 사용하였고 온도를 고러하여 해석하였다. 해석을 통해서 레저버와 모세관 다이에서 압출물의 압력, 속도, 그리고 온도 분포 등을 예측하였다. 여러 가지 고무 복합체의 다이 팽윤양을 알아보기 위해서 유량과 모세관 다이의 지름을 변경하면서 연구하였다. 본 연구를 통해서 PPT 모델은 고무 복합체에 대한 점탄성 거동을 잘 표현하고 있음을 확인할 수 있었다.