• Title/Summary/Keyword: virus-cell interaction

Search Result 52, Processing Time 0.017 seconds

Potential of Hanjeli (Coix lacryma-jobi) essential oil in preventing SARS-CoV-2 infection via blocking the Angiotensin Converting Enzyme 2 (ACE2) receptor

  • Diningrat, Diky Setya;Sari, Ayu Nirmala;Harahap, Novita Sari;Kusdianti, Kusdianti
    • Journal of Plant Biotechnology
    • /
    • v.48 no.4
    • /
    • pp.289-303
    • /
    • 2021
  • Covid-19 is an ongoing pandemic as we speak in 2022. This infectious disease is caused by the SARS-CoV-2 virus, which infects cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor on the cell surface. Thus, strategies that inhibit the binding of SARS-CoV-2 to the ACE2 receptor can stop this contagion. Hanjeli (Coix lacryma-jobi) essential oil contains many bioactive compounds, including dodecanoic acid; tetradecanoic acid; 7-Amino-8-imino-2-(2-imino-2H-chromen-3-yl); and 1,5,7,10-tetraaza-phen-9-one. These compounds suppress viral replication and may prevent Covid-19. Accordingly, this study assessed whether, these four limonoid compounds can block the ACE2 receptor. To this end, their physicochemical properties were predicted using Lipinski's "rule of five" on the SwissADME website, and their toxicity was assessed using the online tools ProTox and pkCSM. Additionally, their interactions with the ACE2 receptor were predicted via molecular docking using Autodock Vina. All the four compounds satisfied the "rule of five" and tetradecanoic acid was predicted to have a higher affinity than the comparison compound remdesivir and the original ligand of ACE2. Molecular docking results suggested that the compounds from hanjeli essential oil interact with the active site of the ACE2 receptor similarly as the original ligand and remdesivir. In conclusion, hanjeli essential oil contains compounds predicted hinder the interaction of SARS-CoV-2 with the ACE2 receptor. Accordingly, our data may facilitate the development of a phytomedical strategy against SARS-CoV-2 infection.

Enhanced Growth Inhibition by Combined Gene Transfer of p53 and $p16^{INK4a}$ in Adenoviral Vectors to Lung Cancer Cell Lines (폐암세포주에 대한 p53 및 $p16^{INK4a}$의 복합종양억제유전자요법의 효과)

  • Choi, Seung -Ho;Park, Kyung-Ho;Seol, Ja-Young;Yoo, Chul-Gyu;Lee, Choon-Taek;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.1
    • /
    • pp.67-75
    • /
    • 2001
  • Background : Two tumor suppressor genes, p53 and p16, which have different roles in controlling the cell cycle and inducing apoptosis, are frequently inactivated during carcinogenesis including lung cancer. Single tumor suppressor gene therapies using either with p53 or p16 have been studied extensively. However, there is a paucity of reports regarding a combined gene therapy using these two genes. Methods : The combined effect of p53 and p16 gene transfer by the adenoviral vector on the growth of lung cancer cell lines and its interactive mechanism was investigated. Results : An isobologram showed that the co-transduction of p53 and p16 exhibited a synergistic growth in hibitory effect on NCI H358 and an additive effect on NCI H23. Cell cycle analysis demonstrated the induction of a synergistic G1/S arrest by a combined p53 and p16 transfer. This synergistic interaction was again confirmed in a soft agar confirmed in a soft agar clonogenic assay. Conclusion : These observations suggest the potential of a p53 and p16 combination gene therapy as another potent strategy in cancer gene therapy.

  • PDF