• Title/Summary/Keyword: virus particle

Search Result 105, Processing Time 0.025 seconds

Production of transgenic Alstroemeria plants containing virus resistance genes via particle bombardment

  • Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.164-171
    • /
    • 2020
  • Transgenic Alstroemeria plants resistant to Alstroemeria mosaic virus (AlMV) were generated through RNA-mediated resistance. To this end, the friable embryogenic callus (FEC) of Alstroemeria was induced from the leaf axil tissue and transformed with a DNA fragment containing the coat protein gene and 3'-nontranslated region of AlMV through an improved particle bombardment system. The bar gene was used as a selection marker. More than 300 independent transgenic FEC lines were obtained. Among these, 155 lines resistant to phosphinothricin (PPT) were selected under low stringent conditions. After increasing the stringency of PPT selection, 44 transgenic lines remained, and 710 somatic embryos from these lines germinated and developed into shoots. These transgenic shoots were then transferred to the greenhouse and challenged with AlMV. In total, 25 of the 44 lines showed some degree of resistance. PCR analysis confirmed the presence of the viral sequence. Virus resistance was observed at various levels. Establishment of an efficient transformation system for Alstroemeria will allow inserting transgenes into this plant to confer resistance to viral and fungal pathogens. Accordingly, this is the first report on the production of a transgenic virus-resistant Alstroemeria and lays the foundation for alternative management of viral diseases in this plant.

IFIT1 Expression Patterns Induced by H9N2 Virus and Inactivated Viral Particle in Human Umbilical Vein Endothelial Cells and Bronchus Epithelial Cells

  • Feng, Bo;Zhang, Qian;Wang, Jianfang;Dong, Hong;Mu, Xiang;Hu, Ge;Zhang, Tao
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.271-281
    • /
    • 2018
  • IFIT1 (also known as ISG56) is a member of the interferon-inducible protein with tetratricopeptide repeats (IFITs) family. IFITs are strongly induced by type I interferon (IFN), double-stranded RNA and virus infection. Here, we investigated IFIT1 expression in human umbilical vein endothelial cells (HUVECs) and in human bronchus epithelial cells (BEAS-2Bs) induced by the H9N2 virus and inactivated viral particle at different time points. We also investigated the effect of H9N2 virus and viral particle infection on $IFN-{\alpha}/{\beta}$ production, and assessed whether hemagglutinin or neuraminidase protein induced IFIT1 expression. Results showed that both H9N2 virus infection and viral particle inoculation induced the expression of IFIT1 at mRNA and protein levels in the two cell lines. Hemagglutinin or neuraminidase protein binding alone is not sufficient to induce IFIT1 expression. Surprisingly, the expression patterns of IFIT1 in response to H9N2 virus and viral particles in the two cell lines were opposite, and production kinetics of $IFN-{\alpha}/{\beta}$ also differed. An additional finding was that induction of IFIT1 in response to H9N2 virus infection or viral particle inoculation was more sensitive in HUVECs than in BEAS-2Bs. Our data offers new insight into the innate immune response of endothelial cells to H9N2 virus infection.

The unique role of domain 2A of the hepatitis A virus precursor polypeptide P1-2A in viral morphogenesis

  • Morace, Graziella;Kusov, Yuri;Dzagurov, Georgy;Beneduce, Francesca;Gauss-Muller, Verena
    • BMB Reports
    • /
    • v.41 no.9
    • /
    • pp.678-683
    • /
    • 2008
  • The initial step during assembly of the hepatitis A virus particle is driven by domain 2A of P1-2A, which is the precursor of the structural proteins. The proteolytic removal of 2A from particulate VP1-2A by an as yet unknown host enzyme presumably terminates viral morphogenesis. Using a genetic approach, we show that a basic amino acid residue at the C-terminus of VP1 is required for efficient particle assembly and that host proteases trypsin and cathepsin L remove 2A from hepatitis A virus particles in vitro. Analyses of insertion mutants in the C-terminus of 2A reveal that this part of 2A is important for liberation of P1-2A from the polyprotein. The data provide the first evidence that the VP1/2A junction is involved in both viral particle assembly and maturation and, therefore, seems to coordinate the first and last steps in viral morphogenesis.

Detection of Tobamoviruses and Survey on Contamination Rate in Commercial Pepper Seeds Using Gelatin Particle Agglutination Test (젤라틴입자응집반응법을 이용한 국내 시판 고추종자의 Tobamovirus 검출 및 오염률 조사)

  • 한정헌;장태호;이철호;김영호;나용준
    • Research in Plant Disease
    • /
    • v.7 no.3
    • /
    • pp.170-174
    • /
    • 2001
  • Gelatin particle agglutination test (GPAT) was optimized for detection of Tobamovirus and contamination of the virus in commercial pepper seeds was evaluated. The optimum concentration of ${\gamma}$-globulin G, specific to tobacco mosaic virus pepper strain, was 100 ug/ml. The sensitivity of GPAT for the detection of Tobamovirus in pepper seeds was as high as enzyme-linked immunosorbent and dot immunoblotting assays. Optimum dilution ranges of the seed extract for GPAT was 5-25 folds. Using the optimized GPAT with above conditions, the rate of Tobamovirus contamination in seeds was turned out to be average of 79.1%.

  • PDF

Turnip Mosaic Virus Isolated from Rorippa islandica Borb (속속이풀(Rorippa islandica Borb.)에서 분리한 순무 모자이크 바이러스)

  • 최준근;최국선;최장경;유병주;정태성
    • Korean Journal Plant Pathology
    • /
    • v.10 no.2
    • /
    • pp.136-139
    • /
    • 1994
  • Turnip mosaic virus (TuMV) was isolated from Rorippa islandica showing mild mosaic symptom in growing field of Chinese cabbage and radish. Identification of the virus was based on host range, transmission by aphids, electron micrograph, serological reaction and hybridization detection. The virus systemically infected on Chenopodium quinoa, Nicotiana clevelandii, N. glutinosa, Brassica rapa, B. campestris subsp. pekinensis and Raphanus sativus, whereas showed local infection on C. amaranticolor, Gomphrena globosa and Tetragonia tetragonoides. The virus was transmitted by aphid (Myzus persicae). The virus particle was filamentous with 720$\times$12 nm in length, and reacted positively with an antiserum of TuMV in agar gel double duffusion test. In slot-blot hybridization using the digoxigenin(DIG)-labeled RNA probe, TuMV-RNA could be detected in sap of R. islandica infected with the virus. This is the first report of a natural infection of that virus on R. islandica.

  • PDF

Use of Gelatin Particle Agglutination Test for the Detection of Cymbidium mosaic virus in Cattleya Plants

  • Han, Jung-Heon;Jeong, Hyoo-Won;La, Yong-Joon
    • The Plant Pathology Journal
    • /
    • v.17 no.6
    • /
    • pp.325-328
    • /
    • 2001
  • Gelatin particle agglutination test (GPAT) was used to detect Cymbidum mosaic virus (CymMV) in Cattleya plants. Gelatin particles were coated with purified anti-CymMV immunoglobulin of 25-100 $\mu\textrm{g}$/ml and were subjected to several different concentrations of purified CyMfV as well as varying dilutions of orchid leaf extracts. The GPAT detected purified CymMV up to a minimum concentration of 10 $\mu\textrm{g}$/ml. CymMV was detected from crude sap extract of infected Cattleya leaves and roots up to 1:51,200 and 1:25,600 dilutions, respectively. However, the optimum range of leaf and root sap dilutions was between 50-100. Non-specific reactions were not encountered from any of the healthy orchid plants tested. The entire GPAT process was completed within 2-3 hours. This test was found to be very useful for the detection of CymMV in orchids because it is sensitive, economical, and easy to perform.

  • PDF

Characterization and RT-PCR Detection of Turnip Mosaic Virus Isolated from Chinese Cabbage in Korea (배추에서 분리한 순무 모자이크 바이러스의 특성 및 역전사 중합효소 연쇄반응법(RT-PCR)을 이용한 검정)

  • 박원목;최설란;김수중;최승국;류기현
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.223-228
    • /
    • 1998
  • Turnip mosaic virus)TuMV-Ca) was isolated from a Chinese cabbage showing severe mosaic and black necrotic spots symptoms in Korea. The virus was identified as a strain of TuMV by its host range test, particle morphology, serology, double stranded RNA analysis. For detection of the virus, reverse transcription and polymerase chain reaction(RT-PCR) was performed with a set of 18-mer TuMV-specific primers to amplify a 876 bp DNA fragment The virus was rapidly detected from total nucleic acids of virus infected tissues as well as native viral RNA of purified virion particles by RT-PCR. Detection limit of the viral RNA by RT-PCR was 10 fg.

  • PDF

Molecular characterization of Cucumber mosaic virus isolates isolated in Korea

  • Park, Jang-Kyung
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.4-8
    • /
    • 2003
  • Cucumber mosaic virus (CMV) belongs to genus Cucumovirus. The Cucumovirus group contains three distinct members: CMV, Tomato aspermy virus (TAV), and Peanut stunt virus (PSV). The type member, CMV is the most widespread and most studied. CMV is isometric particles about 30 nm in diameter. The genome of CMV is divided into three RNAs. In addition, RNA extracted from virus particles contains a fourth RNA that is a subgenomic RNA generated from RNA3. RNA1 and RNA2 are each encapsidated in separate particles, whereas RNAs3 and 4 are coencapsidated in a third particle. Hence, inoculation by three particles, transmitted either mechanically or by the aphid vector, is required to infect plants.(중략)

  • PDF

Visualization of Hepatitis B Virus (HBV) Surface Protein Binding to HepG2 Cells

  • Lee, Dong-Gun;Park, Jung-Hyun;Choi, Eun-A;Han, Mi-Young;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.175-179
    • /
    • 1996
  • Viral surface proteins are known to play an essential role in attachment of the virus particle to the host cell membrane. In case of the hepatitis B virus (HBV) several reports have described potential receptors on the target cell side, but no definite receptor protein has been isolated yet. As for the viral side, it has been suggested that the preS region of the envelope protein, especially the preS1 region, is involved in binding of HBV to the host cell. In this study, preS1 region was recombinantly expressed in the form of a maltose binding protein (MBP) fusion protein and used to identify and visualize the expression of putative HBV receptor(s) on the host cell. Using laser scanned confocal microscopy and by FACS analysis, MBP-preS1 proteins were shown to bind to the human hepatoma cell line HepG2 in a receptor-ligand specific manner. The binding kinetic of MBP-preS1 to its cellular receptor was shown to be temperature and time dependent. In cells permeabilized with Triton X-100 and treated with the fusion protein, a specific staining of the nuclear membrane could be observed. To determine the precise location of the receptor binding site within the preS1 region, several short overlapping peptides from this region were synthesized and used in a competition assay. In this way the receptor binding epitope in preS1 was revealed to be amino acid residues 27 to 51, which is in agreement with previous reports. These results confirm the significance of the preS1 region in virus attachment in general, and suggest an internalization pathway mediated by direct attachment of the viral particle to the target cell membrane.

  • PDF

Recent progress in vaccine development targeting pre-clinical human toxoplasmosis

  • Ki-Back Chu;Fu-Shi Quan
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.3
    • /
    • pp.231-239
    • /
    • 2023
  • Toxoplasma gondii is an intracellular parasitic organism affecting all warm-blooded vertebrates. Due to the unavailability of commercialized human T. gondii vaccine, many studies have been reported investigating the protective efficacy of pre-clinical T. gondii vaccines expressing diverse antigens. Careful antigen selection and implementing multifarious immunization strategies could enhance protection against toxoplasmosis in animal models. Although none of the available vaccines could remove the tissue-dwelling parasites from the host organism, findings from these pre-clinical toxoplasmosis vaccine studies highlighted their developmental potential and provided insights into rational vaccine design. We herein explored the progress of T. gondii vaccine development using DNA, protein subunit, and virus-like particle vaccine platforms. Specifically, we summarized the findings from the pre-clinical toxoplasmosis vaccine studies involving T. gondii challenge infection in mice published in the past 5 years.