• Title/Summary/Keyword: virtual testing machines

Search Result 6, Processing Time 0.044 seconds

A Hybrid Cloud Testing System Based on Virtual Machines and Networks

  • Chen, Jing;Yan, Honghua;Wang, Chunxiao;Liu, Xuyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1520-1542
    • /
    • 2020
  • Traditional software testing typically uses many physical resources to manually build various test environments, resulting in high resource costs and long test time due to limited resources, especially for small enterprises. Cloud computing can provide sufficient low-cost virtual resources to alleviate these problems through the virtualization of physical resources. However, the provision of various test environments and services for implementing software testing rapidly and conveniently based on cloud computing is challenging. This paper proposes a multilayer cloud testing model based on cloud computing and implements a hybrid cloud testing system based on virtual machines (VMs) and networks. This system realizes the automatic and rapid creation of test environments and the remote use of test tools and test services. We conduct experiments on this system and evaluate its applicability in terms of the VM provision time, VM performance and virtual network performance. The experimental results demonstrate that the performance of the VMs and virtual networks is satisfactory and that this system can improve the test efficiency and reduce test costs through rapid virtual resource provision and convenient test services.

Multiscale Virtual Testing Machines of Concrete and Other Composite Materials: A Review (콘크리트 및 복합재료용 멀티스케일 가상 시험기계에 관한 소고)

  • Haile, Bezawit F.;Park, S.M.;Yang, B.J.;Lee, H.K.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.173-181
    • /
    • 2018
  • Recently composite materials have dominated most engineering fields, owing to their better performance, increased durability and flexibility to be customized and designed for a specific required property. This has given them unprecedented superiority over conventional materials. With the help of the ever increasing computational capabilities of computers, researchers have been trying to develop accurate material models for the complex and integrated properties of these composites. This has led to advances in virtual testing of composite materials as a supplement or a possible replacement of laboratory experiments to predict the properties and responses of composite materials and structures. This paper presents a review on the complex multi-scale modelling framework of the virtual testing machines, which involve computational mechanics at various length-scales starting with nano-mechanics and ending in structure level computational mechanics, with a homogenization technique used to link the different length scales. In addition, the paper presents the features of some of the biggest integrated virtual testing machines developed for study of concrete, including a multiscale modeling scheme for the simulation of the constitutive properties of nanocomposites. Finally, the current challenges and future development potentials for virtual test machines are discussed.

Suggested Temperature Monitoring System for Distribution Transformers by Using Microcontroller Scheme

  • El-Gawad, Amal F. Abd
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2099-2104
    • /
    • 2015
  • The paper presents a monitoring system for the cooling of distribution transformers. The suggested system is controlled by a microcontroller scheme. The system is designed to control the oil temperature. It gives a solution to improve the cooling system by adding a number of fans especially for indoor transformers that are placed in badly-ventilated rooms. Also, the paper includes an alarm system with the possibility of tripping the transformer if it is necessary. The monitoring system consists of acquisition temperature sensor, and on-site unit. The hardware and software of the on-site unit are demonstrated with sufficient illustrations. Small prototype is constructed in the laboratory. Some laboratory experiments are carried out for examining the designed circuit by using Proteus Virtual System Modeling as well as for testing the prototype monitoring system. Concerning this research point, a study is carried out to evaluate the economic feasibility. The results are recorded and associated with many recommendations that may be valuable to electrical distribution (utility) companies.

Implementation of a process control language for pager manufacturing (호출기 자동 생산 제어 프로그램 언어 구현)

  • Jeon, Se-Jung;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2405-2407
    • /
    • 1998
  • Implementation of a process control language for a pager manufacturing is dealt in this paper. The pager manufacturing process is consisted of a tune and an exam part. In the tune part, three capacitor trimmers are tuned to optimize the state of the pager. In the exam part, message receiving status with the arbitrary calling is tested using a vision system. The program has the ability to reuse the address discarded in the exam part when the, pager testing is not working properly even though there exist the processing gaps between two processes. The system is composed of a personal computer(PC586) and TEM-cells, Flex pager testers, an oscilloscope, a camera, and actuators. Visual Basic running on the Windows 95 is used to implement the control software which has the GUI to make an operator convenient. The validity of applying the completed program to practical machines, which are developing in the KITECH, is shown by using the virtual machine.

  • PDF

The Dynamics of Noise and Vibration Engineering Vibrant as ever, for years to come

  • Leuridan, Jan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.47-47
    • /
    • 2010
  • Over the past 20 years, constant progress in noise and vibration (NVH) engineering has enabled to constantly advance quality and comfort of operation and use of really any products - from automobiles to aircraft, to all kinds of industrial vehicles and machines - to the extend that for many products, supreme NVH performance has becomes part of its brand image in the market. At the same time, the product innovation agenda in the automotive, aircraft and really many other industries, has been extended very much in recent years by meeting ever more strict environmental regulations. Like in the automotive industry, the drive towards meeting emission and CO2 targets leads to very much accelerated adoption of new powertrain concepts (downsizing of ICE, hybrid-electrical...), and to new vehicle architectures and the application of new materials to reduce weight, which bring new challenges for not only maintaining but further improving NVH performance. This drives for innovation in NVH engineering, so as to succeed in meeting a product brand performance for NVH, while as the same time satisfying eco-constraints. Product innovation has also become increasingly dependent on the adoption of electronics and software, which drives for new solutions for NVH engineering that can be applied for NVH performance optimization of mechatronic products. Finally, relentless pressure to shorten time to market while maintaining overall product quality and reliability, mandates that the practice and solutions for NVH engineering can be optimally applied in all phases of product development. The presentation will first review the afore trends for product and process innovation, and discuss the challenges they represent for NVH engineering. Next, the presentation discusses new solutions for NVH engineering of products, so as to meet target brand values, while at the same time meeting ever more strict eco constraints, and this within a context of increasing adoption of electronics and controls to drive product innovation. NVH being very much defined by system level performance, these solutions implement the approach of "Model Based System Engineering" to increase the impact of system level analysis for NVH in all phases of product development: - At the Concept Phase, to be able to do business case analysis of new product concepts; to arrive at an optimized and robust product architecture (e.g. to hybrid powertrain lay-out, to optimize fuel economy); to enable target cascading, to subsystem and component level. - In Development Phase, to increase realism and productivity of simulation, so as to frontload virtual validation of components and subsystems and to further reduce reliance on physical testing. - During the final System Testing Phase, to enable subsystem testing by a combination of physical testing and simulation: using simulation models to simulate the final integration context when testing a subsystem, enabling to frontload subsystem testing before final system integration is possible. - To interconnect Mechanical, Electronical and Controls engineering, in all phases of development, by supporting model driven controls engineering (MIL, SIL, HIL). Finally, the presentation reviews examples of how LMS is implementing such new applications for NVH engineering with lead customers in Europe, Asia and US, with demonstrated benefits both in terms of shortening development cycles, and/or enabling a simulation based approach to reduce reliance on physical testing.

  • PDF

Performance Testing of Satellite Image Processing based on OGC WPS 2.0 in the OpenStack Cloud Environment (오픈스택 클라우드 환경 OGC WPS 2.0 기반 위성영상처리 성능측정 시험)

  • Yoon, Gooseon;Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.617-627
    • /
    • 2016
  • Many kinds of OGC-based web standards have been utilized in the lots of geo-spatial application fields for sharing and interoperable processing of large volume of data sets containing satellite images. As well, the number of cloud-based application services by on-demand processing of virtual machines is increasing. However, remote sensing applications using these two huge trends are globally on the initial stage. This study presents a practical linkage case with both aspects of OGC-based standard and cloud computing. Performance test is performed with the implementation result for cloud detection processing. Test objects are WPS 2.0 and two types of geo-based service environment such as web server in a single core and multiple virtual servers implemented on OpenStack cloud computing environment. Performance test unit by JMeter is five requests of GetCapabilities, DescribeProcess, Execute, GetStatus, GetResult in WPS 2.0. As the results, the performance measurement time in a cloud-based environment is faster than that of single server. It is expected that expansion of processing algorithms by WPS 2.0 and virtual processing is possible to target-oriented applications in the practical level.