• Title/Summary/Keyword: virtual constraint

Search Result 84, Processing Time 0.027 seconds

Digital Reproduction of Mobiles (모빌의 디지털 재현)

  • Lee, Dong-Chun;Lee, Nam-Kyeong;Jung, Dae-Hyun;Kim, Chang-Tae;Lee, Dong-Kyu;Bae, Hee-Jung;Baek, Nakhoon;Lee, Jong-Won;Ryu, Kwan-Woo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.9
    • /
    • pp.415-423
    • /
    • 2001
  • Recently, there are many attempts to reproduce real world fine art pieces in digital forms. The digital representations are convenient to store and/or transmit. In contrast, mobiles, or moving sculptures, such as those designed by Alexander Calder cannot to reproduced realistically by usual reproduction techniques. Since mobiles are originally designed to generate motions in response to external forces applied to it, people could not fully enjoy them through photographs or static images. We present a virtual mobile system where use can easily control the mobile and can feel the impressions that the artist originally intended to provide. A real-world mobile is reconstructed in a three-dimensional physically-based model. and then virtual wind is generated to give motions to it. The motions of the mobile are generated by constraint dynamics and impulse dynamics techniques, which are modified to fully utilize the characteristics of the mobile, and finally give interactive displays on the PC platforms. The techniques presented can easily be extended to simulate other interactive dynamics systems.

  • PDF

A Study on Program Development for Static Design Factor of Automotive Suspension System (자동차 현가장치의 정적설계인자 계산을 위한 프로그램 개발에 관한 연구)

  • Kim, Kwang-Suk
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.283-289
    • /
    • 2017
  • In this study, a general program has been developed to calculate the static design factor of a vehicle suspension system. The partial derivatives of Jacobians for constraint equations are calculated using the symbolic technique. In the commercial program, finite difference method is used to calculate the Jacobian matrix of Jacobian. But in this study, it is calculated by using the symbol calculation method to precisely consider it. The calculated Jacobian matrix for the system has proved its accuracy through the solution of the numerical example. A simulation was performed for a double wishbone suspension of a 1/4 vehicle. The result can be used to calculate the static design factor of the suspension, and also add a convergence module that can perform virtual tests.

Optimization of the Television Packing System Using Equivalent Static Loads (등가정하중법을 이용한 텔레비전 포장재의 구조최적설계)

  • Lee, Youngmyung;Jung, Ui-Jin;Park, Gyung-Jin;Han, In-Sik;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • A nonlinear dynamic response structural optimization process is proposed for the television (TV) packing system that protects the damage from a drop situation using the equivalent static loads (ESLs). Topology optimization using ESLs is carried out for conceptual design, and shape optimization using stress ESLs for a virtual model is performed for detailed design. Stress ESLs are static loads that generate the same displacement as well as the stress fields of linear static analysis as those of nonlinear dynamic analysis. Thus, the response of nonlinear dynamic analysis can be utilized as a constraint in the linear static structural optimization. An actual example is solved to validate the process. The drop test of a television packaging system is analyzed by LS-DYNA, and NASTRAN is used for optimization.

A Study on the Optimization of Steel Structures Considering Displacement Constraints (변위제약조건을 고려한 강구조물의 최적화에 관한 연구)

  • Kim, Ho Soo;Lee, Han Joo
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.657-666
    • /
    • 1998
  • This study presents an effective dual algorithm for the optimal design of steel structures with displacement constraints. The dual method can replace a primary optimization problem with a sequence of approximate explicit subproblems with a simple algebraic structure. Since being convex and separable, each subproblem can be solved efficiently by the dual method. Specifically, this study uses the principle of virtual work to obtain the displacement constraint equations with an explicit form and adds the linear regression equation expressing the relationships between the cross-section properties to the dual algorithm to reduce the number of design variables. Furthermore, this study deals with the discrete optimization problem to select members with the standard steel sections. Through numerical analyses, the proposed method will be compared with the conventional optimality criteria method.

  • PDF

On Implementing and Deploying Label Distribution Protocol in MultiProtocal Label Switching Systems (MPLS시스템에서 LDP 기능 구현 및 활용 방안)

  • 김미희;이종협;이유경
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.2
    • /
    • pp.270-281
    • /
    • 2003
  • ETF made the RFCs of MPLS technologies for providing the QoS of ATM or Frame Relay and the flexibility&scalability of IP on the Internet services. IETF has been expanding MPLS technologies as a common control component for supporting the various switching technologies called GMPLS. Also, IETF has standardized the signaling protocols based on such technologies, such as LDP, CR-LDP and RSVP-TE. ETRI developed the MPLS system based on ATM switch in order to provide more reliable services, differentiated services and value-added services like the VPN and traffic engineering service on the Korea Public Sector network. We are planning on deploying model services and commercial services on that network. This paper explains the basic functions of LDP, design and development of LDP on our system, and compares with LDP development and operation on other MPLS systems made by Cisco, Juniper, Nortel and Riverstone. In conclusion, this paper deduces the future services and applications by LDP through these explanation and comparison.

Constraint Relaxation using User Interaction in Reactive Scheduling Environment (동적 스케줄링 문제에서 사용자 상호작용을 이용한 제약조건 완화)

  • Lee, Hoon;Jung, Jong Jin;Jo, Geun Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.2
    • /
    • pp.132-142
    • /
    • 1998
  • In optical scanning holography, 3-D holographic information of an object is generated by 2-D active optical scanning. The optical scanning beam can be a time-dependent Gaussian apodized Fresnel zone plate. In this technique, the holographic information manifests itself as an electrical signal which can be sent to an electron-beam-addressed spatial light modulator for coherent image reconstruction. This technique can be applied to 3-D optical remote sensing especially for identifying flying objects. In this paper, we first briefly review optical scanning holography and analyze the resolution achievable with the system. We then present mathematical expression of real and virtual image which are responsible for holographic image reconstruction by using Gaussian beam profile.

  • PDF

Analysis on Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control Part 1: System Model and Kinematic Constraint (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 1: 시스템 모델 및 기구학적 제한)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1106-1114
    • /
    • 2012
  • To achieve synchronized motion between a wearable robot and a human user, the redundancy must be resolved in the same manner by both systems. According to the seven DOF (Degrees of Freedom) human arm model composed of the shoulder, elbow, and wrist joints, positioning and orientating the wrist in space is a task requiring only six DOFs. Due to this redundancy, a given task can be completed by multiple arm configurations, and thus there exists no unique mathematical solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and their effect on the redundancy resolution of the human arm based on a seven DOF manipulator model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing different cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid for the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each two consecutive points along the task space trajectory. As a first step, the redundancy based on the kinematic criterion will be thoroughly studied based on the motion capture data analysis. Experimental results indicate that by using the proposed redundancy resolution criterion in the kinematic level, error between the predicted and the actual swivel angle acquired from the motor control system is less than five degrees.

Virtual Optimal Design of Satellite Adapter in Parallel Computing Environment (병렬 컴퓨팅 환경 하에서 인공위성 어댑터 가상최적설계)

  • Moon, Jong-Keun;Yoon, Young-Ha;Kim, Kyung-Won;Kim, Sun-Won;Kim, Jin-Hee;Kim, Seung-Jo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.973-982
    • /
    • 2007
  • In this paper, optimal design framework is developed by automatic mesh generation and PSO(Particle Swarm Optimization) algorithm based on parallel computing environment and applied to structural optimal design of satellite adapter module. By applying automatic mesh generation, it became possible to change the structural shape of adapter module. PSO algorithm was merged with parallel computing environment and for maximizing a computing performance, asynchronous PSO algorithm was developed and could reduce the computing time of optimization process. As constraint conditions, eigen-frequency and maximum stress was considered. Finally using optimal design framework, weight reduction of satellite adapter module is derived with satisfaction of structural safety.

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

Transmitting Devices Selection Based on Viewpoint Popularity for Wireless Free-Viewpoint Video Streaming (무선 자유시점 비디오 스트리밍에서 인기도 기반 전송 기기 선택 기법)

  • Koo, Jae-Woo;Cho, Young-Jong;Kang, Kyungran
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.546-554
    • /
    • 2016
  • Free-viewpoint video (FVV) is a synthesization technology that generates a virtual viewpoint video using multiple videos recorded via wireless devices at heterogeneous locations. In order to introduce a new service that grafts the FVV onto the real-time streaming service using wireless devices, we need to overcome several constraints. Two main factors of those constraints are the limited wireless capacity that are shared fairly by multiple devices, and the transmission time constraint with which live streaming services have to comply. Therefore, for optimal quality of entire videos, a set of transmitting devices should be effectively selected depending on the condition of wireless channel and the required video popularity of specific viewpoint requested from users. For optimal selection, this study proposes a heuristic algorithm that takes into account the aforementioned factors from possible wireless transmission error behaviors and the requested viewpoint popularity. Through analysis and simulation, we show that with this algorithm, quality of most popular viewpoint videos is guaranteed. Furthermore, performance comparison against the existing scheme which is based only on the location of recording devices is made.