• 제목/요약/키워드: virtual assembly analysis

검색결과 35건 처리시간 0.027초

Virtual Assembly Analysis Tool and Architecture for e-Design and Realization Environment

  • Kim, K.Y.;Nnaji, Bart-O.;Kim, D.W.
    • 한국CDE학회논문집
    • /
    • 제9권1호
    • /
    • pp.62-76
    • /
    • 2004
  • Many customers are no longer satisfied with mass-produced goods. They are demanding customization and rapid delivery of innovative products. Many companies are now realizing that the best way to reduce life cycle costs is to evolve a more effective product development paradigm using Internet and web based technologies. Yet there remains a gap between current market demands and product development paradigms. The existing CAD systems require that product developers possess all the design analysis tools in-house making it impractical to employ all the needed and newest tools. Hence, this paper addresses how assembly operation analysis can be embedded transparently and remotely into a service-oriented collaborative assembly design environment. A new assembly operation analysis framework is introduced and a relevant architecture and tools are developed to realize the framework. Instead of the current sequential process for verifying and validating an assembly design, a new Virtual Assembly Analysis (VAA) method is introduced in the paper to predict the various effects of joining during actual collaborative design. As a case study, arc welding and riveting processes are investigated. New service-oriented VAA architecture and its VAA components are proposed and implemented on prototype mechanical assemblies.

건전지 세퍼레이터 와인딩 및 삽입시스템의 Virtual Prototype 개발 (Development of Virtual Prototype for Separator Winding and Inserting Machine of Battery Assembly Line)

  • 정상화;차경래;신병수;나윤철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.727-730
    • /
    • 2002
  • Most of battery industries are growing explosively as a core strategy industry for the development of the semi-conductor, the LCD, and the mobile communication device. Dynamic characteristic analysis consists of dynamic behavior analysis and finite element analysis and is necessary for effective design of machines. In the dynamic behavior analysis, the displacement, velocity, applied force and angular velocity of each components are simulated according to each part. In the FEA, stress analysis, mode analysis, and frequency analysis are performed far each part. The results of these simulations are used for the design specification investigation and compensation for optimal design of cell manufacturing line. Virtual Engineering of the separator inserting machine on the automatic cell assembly line systems are modeled and simulated. 3D motion behavior is visualized under real-operating condition on the computer window. Virtual Prototype make it possible to save time by identifying design problems early in development, cut cost by reducing making hardware prototype, and improve quality by quickly optimizing full-system performance. As the first step of CAE which integrates design, dynamic modeling using ADAMS and FEM analysis using NASTRAN are developed.

  • PDF

건전지 자동화 조립라인의 라벨링부의 Virtual Prototype 개발 (Development of Virtual Prototype for Labeling: Unit on the Automatic Battery Manufacturing Line)

  • 정상화;차경래;김현욱;신병수;나윤철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.357-362
    • /
    • 2002
  • Most of battery industries are growing explosively as a core strategy industry for the development of the semi-conductor, the LCD, and the mobile communication device. In this thesis, dynamic characteristics of the steel can labeling machine on the automatic cell assembly line are studied. Dynamic characteristic analysis consists of dynamic behavior analysis and finite element analysis and is necessary for effective design of machines. In the dynamic behavior analysis, the displacement, velocity, applied force and angular velocity of each components are simulated according to each part. In the FEA, stress analysis, mode analysis, and frequency analysis are performed for each part. The results of these simulations are used for the design specification investigation and compensation for optimal design of cell manufacturing line. Therefore, Virtual Engineering of the steel can labeling machine on the automatic cell assembly line systems are modeled and simulated. 3D motion behavior is visualized under real-operating condition on the computer window. Virtual Prototype make it possible to save time by identifying design problems early in development, cut cost by reducing making hardware prototype, and improve quality by quickly optimizing full-system performance. As the first step of CAE which integrates design, dynamic modeling using ADAMS and FEM analysis using NASTRAN are developed.

  • PDF

자동차 가상생산 기술적용(VI) : 디지털 가상공장을 이용한 조립공장 자재배치 및 검토 (Virtual Manufacturing for an Automotive Company(VI) : Material Addressing and Analysis using Digital Virtual Factory for General Assembly Shop)

  • 이강걸;강형석;노상도
    • 산업공학
    • /
    • 제21권1호
    • /
    • pp.131-140
    • /
    • 2008
  • To shorten product development time and cost, integrated information managements of product, manufacturing process and resource are essential. In the area of material addressing, process engineers should make their decisions in the manner of collaborative engineering in order to reduce the manufacturing preparation time and cost in the product development and production. A digital virtual factory which is an united digital model of entire factory could be very useful for these areas. In this paper, the digital virtual factory is constructed and used for material addressing and analysis of an automotive general assembly shop. We developed the material addressing system for automotive general assembly shops using digital virtual factory models and nesting algorithms, and applied it to realistic problems of a Korean automotive company as an convenient and effective way of material addressing.

자동차 가상생산 기술 적용 (I) - 생산준비 업무 분석 및 적용 전략 수립 (Virtual Manufacturing for an Automotive Company (I) - Workflow Analysis and Strategic Planning of Manufacturing Preparation Activities)

  • 노상도;이창호;한형상
    • 산업공학
    • /
    • 제14권2호
    • /
    • pp.120-126
    • /
    • 2001
  • Virtual manufacturing is a technology facilitating effective development and agile manufacturing of products via sophisticated computer models representing physical and logical schema and behavior of real manufacturing systems including manufacturing resources, environments, and products. Based on these models, virtual manufacturing supports decision making and error checking in the entire manufacturing processes from design to mass production. At first, we analyzed manufacturing preparation activities of the four major production shops such as press, body assembly, painting and final assembly, of a Korean automotive company. We then developed the workflow models out of the analysis by the IDEF methodology, and generated a strategic plan for the systematic application of the virtual manufacturing technologies. We identified many manufacturing preparation activities that can be improved by the application of virtual manufacturing technologies. Finally, we estimated the effect of improvement including time savings in car development processes and corresponding cost savings.

  • PDF

Logical 모델을 활용한 자동차 차체 조립 라인의 시뮬레이션 적용을 위한 방안 연구 및 적용 (A Study and Application of Methodology for Applying Simulation to Car Body Assembly Line using Logical Model)

  • 구락조;박상철;왕지남
    • 한국CDE학회논문집
    • /
    • 제14권4호
    • /
    • pp.225-233
    • /
    • 2009
  • The objective of this paper is to examine a construction method and verify PLC logic using the logical modeling and simulation of a virtual plant has complex manufacturing system and the domain of application is car body assembly line of automotive industrial operated by PLC Program. The proposed virtual plant model for the analysis of the construction method consists of three types of components which are virtual device, intermediary transfer and controller is modeled by logical model but it the case of the verification of PLC program, HMI and PLC logic in the field substitute for the controller. The implementation of the proposed virtual plant model is conducted PLC Studio which is an object-oriented modeling language based on logical model. As a result, proposed methods enable 3D graphics is designed in the analysis step to use for verification of PLC program without special efforts.

가상목업을 활용한 협업 정비 시뮬레이션 시스템 (Collaborative Maintenance Simulation System Using Virtual Mockup)

  • 이준규
    • 한국멀티미디어학회논문지
    • /
    • 제15권1호
    • /
    • pp.148-165
    • /
    • 2012
  • 가상목업을 이용한 정비 시뮬레이션을 제품 설계 단계에 적용함으로써 시제품 제작 전 정비성을 검증할 수 있고, 제품 개발 비용을 절감할 것으로 기대되고 있다. 정비 시뮬레이션 결과는 정비 매뉴얼 컨텐츠로 재사용하거나 RAM (Reliability, Availability, Maintainability) 분석 자료로 활용할 수 있다. 가상 환경에서 설계 타당성을 검증하기 위해 정비 시뮬레이션은 가상 제품의 물리특성, 부품의 조립관계, 조작 과정을 실제 환경과 유사하게 제공해야 한다. 시뮬레이션 시스템은 협업 정비 절차를 수행하기 위해 가상 협업 환경으로 확장되어야 한다. 본 논문은 현재 알려진 정비 시뮬레이션을 가상 협업 환경으로 확장하기 위한 3계층 시스템 구조와 물리모의 기반 협업 인터렉션 기술을 제안한다. 제안된 협업 정비 시뮬레이션 시스템은 가상목업 정비 시뮬레이션 시스템으로 구현하였으며, 시뮬레이션 결과를 VADE (Virtual Assembly Design Environment) 사례와 비교하여 물리모의 기반 협업 인터렉션 기술로 다양한 정비 작업을 모의하는 것이 가능함을 확인하였다.

Network-centric CAD

  • Lee, Jae-Yeol;Kim, Hyun;Lee, Joo-Haeng;Do, Nam-Chul;Kim, Hyung-Sun
    • 한국전자거래학회:학술대회논문집
    • /
    • 한국전자거래학회 2001년도 International Conference CALS/EC KOREA
    • /
    • pp.615-624
    • /
    • 2001
  • Internet technology opens up another domain for building future CAD/CAM environment. The environment will be global, network-centric, and spatially distributed. In this paper, we present a new approach to network-centric virtual prototyping (NetVP) in a distributed design environment. The presented approach combines the current virtual assembly modeling and analysis technique with distributed computing and communication technology fur supporting virtual prototyping activities over the network. This paper focuses on interoperability, shape representation, and geometric processing for distributed virtual prototyping. STEP standard and CORBA-based interfaces allow the bi-directional communication between the CAD model and virtual prototyping model, which makes it possible to solve the problems of interoperability, heterogeneity of platforms, and data sharing. STEP AP203 and AP214 are utilized as a means of transferring and sharing product models. In addition, Attributed Abstracted B-rep (AAB) is introduced as 3D shape abstraction for transparent and efficient transmission of 3D models and for the maintenance of naming consistency between CAD models and virtual prototyping models over the network.

  • PDF

위치공차를 포함한 모형의 틈새분석 연구 (The Tolerance Stack Analysis of the Model Involving Position Tolerance)

  • 김영남;윤광호;장성호
    • 대한산업공학회지
    • /
    • 제31권1호
    • /
    • pp.36-43
    • /
    • 2005
  • It is the basic requirement of design process of parts assembly to specify geometric dimensions and tolerances of product characteristics. Among them, tolerance stack analysis is one of the important methods to specify tolerance zone. Tolerance stack analysis is to calculate gap using tolerances which includes geometric and coordinate dimensions. In this study, we suggested more general method called the virtual method to analyze tolerance stack. In virtual method, tolerance zone is formed by combination of dimensional tolerance, geometric tolerance and bonus tolerance. Also tolerance zone is classified by virtual boundary condition and resultant boundary condition. So gap can be defined by combination of virtual boundary and/or resultant boundary. Several examples are used to show the effectiveness of new method comparing to other methods.

LED 융합조명의 자동화 조립 시스템에서 전자동 매거진 피더에 관한 구조해석과 동특성 분석 (Structural and Dynamic Characteristic Analysis for Automatic Magazine Feeder in Automation Assembly System for LED Convergency Lighting)

  • 추세웅;정상화
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.23-33
    • /
    • 2018
  • In the general manual feeder of an LED lighting assembly system, many workers are needed to supply parts to the main conveyor. The automatic feeder for modern automation lighting assembly systems consists of a completely automated feeding system and a magazine system that supplies the parts automatically. A standardized LED panel and diffusion cover is stacked in the cartridge of the magazine system. The structural safety of the automatic feeding system with regard to handling the load from the panels and covers stored in the cartridge should be guaranteed. LED convergency lighting modules are assembled using two LED panels and one diffusion cover in an automatic feeder. In this study, the structural safety and fatigue life of the automatic feeder and magazine were analyzed by considering the load generated in the automatically assembled LED convergency lighting system. In addition, the dynamic behavior of each auto-feeding system and magazine delivery system was visualized, and the working process was evaluated via dynamic simulation using a virtual engineering method. A tack time table for automatic feeding systems was derived by developing a virtual prototype.