• 제목/요약/키워드: viral vectors

검색결과 98건 처리시간 0.025초

Application of genome engineering for treatment of retinal diseases

  • Jo, Dong Hyun;Kim, Jeong Hun
    • BMB Reports
    • /
    • 제51권7호
    • /
    • pp.315-316
    • /
    • 2018
  • Genome engineering with clustered regularly interspaced short palindromic repeats (CRISPR) system can be used as a tool to correct pathological mutations or modulate gene expression levels associated with pathogenesis of human diseases. Owing to well-established local administration methods including intravitreal and subretinal injection, it is relatively easy to administer therapeutic genome engineering machinery to ocular tissues for treating retinal diseases. In this context, we have investigated the potential of in vivo genome engineering as a therapeutic approach in the form of ribonucleoprotein or CRISPR packaged in viral vectors. Major issues in therapeutic application of genome engineering include specificity and efficacy according to types of CRISPR system. In addition to previous platforms based on ribonucleoprotein and CRISPR-associated protein 9 derived from Campylobacter jejuni, we evaluated the therapeutic effects of a CRISPR RNA-guided endonuclease derived from Lachnospiraceae bacterium ND2006 (LbCpf1) in regulating pathological angiogenesis in an animal model of wet-type age-related macular degeneration. LbCpf1 targeting Vegfa or Hif1a effectively disrupted the expression of genes in ocular tissues, resulting in suppression of choroidal neovascularization. It was also notable that there were no significant off-target effects in vivo.

Agroinfiltration-based Potato Virus X Replicons to Dissect the Requirements of Viral Infection

  • Park, Sang-Ho;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • 제22권4호
    • /
    • pp.386-390
    • /
    • 2006
  • Extensive research of the Potato virus X(PVX) has been performed in in vitro transcription system using the bacteriophage T7 promoter. We constructed an efficient T-DNA based binary vector, pSNU1, and modified vectors carrying PVX replicons. The suitability of the construct to transiently express PVX RNA using Agrobacterium tumefaciens was tested by analysis of infectivity in plants. The expressed PVX RNA was infectous and systemically spread in three plant species including Nicotiana benthamiana, N. tabacum cv. Xanthi-nc, and Capsicum annuum cv. Chilsungcho. The PVX full length construct, pSPVXp31, was caused severe mosaic symptoms on N. benthamiana, severe necrotic lesions on C. annuum while milder symptoms and delayed mosaic symptoms were appeared on the systemic leaves on N. tabaccum. RT-PCR analysis confirmed the presence of PVX RNAs on both inoculated and systemic leaves in all three plant species tested. Our results indicated that PVX replicons were efficiently expressed PVX RNA in at least three tested species. Further investigation win be needed to elucidate the mechanism of PVX replication, translation, movement and assembly/disassembly processes.

Induction of RNA-mediated Resistance to Papaya Ringspot Virus Type W

  • Krubphachaya, Pongrit;Juricek, Mila;Kertbundit, Sunee
    • BMB Reports
    • /
    • 제40권3호
    • /
    • pp.404-411
    • /
    • 2007
  • Transformation of cantaloupes with the coat protein (cp) gene of papaya ringspot virus type W (PRSV-W), Thai isolate, was used to introduce virus resistance. Binary vectors containing either the full length coat protein coding region under control of the 35S CaMV promoter(pSA1175), or the inverted-repeat of a coat protein coding region (pSA1304), were constructed and used for Agrobacteriummediated transformation of cotyledonary explants of the cantaloupe cultivar Sun Lady. Four independent transgenic lines were obtained using pSA1304 and one using pSA1175. Integration of the PRSV-W cp gene into the genome of these transgenic lines was verified by PCR amplification, GUS assays and Southern blot hybridization. In vitro inoculation of these lines with PRSV-W revealed that whereas the line containing pSA1175 remained sensitive, the four lines containing pSA1304 were resistant. The presence of small RNA species, presumably siRNA, corresponding to regions of the viral cp gene in transgenic lines resistant to PRSV-W supports the involvement of post-transcriptional gene silencing in the establishment of resistance.

New Antisense RNA Systems Targeted Against Plant Pathogens

  • Matousek, J.;Vrba, L.;Kuchar, M.;Pavingerova, D.;Orctova, L.;Ptacek, J.;Schubert, J.;Steger, G.;Beier, H.;Riesner, D.
    • 식물조직배양학회지
    • /
    • 제27권5호
    • /
    • pp.379-385
    • /
    • 2000
  • tRNA and 7SL RNA based antisense vehicles were prepared by inserting conserved anti-viral and anti-viroid domains. Anti-PVS coat protein leader sequence (ACPL) and antistructural antihairpin domain of PSTVd (AHII) were inserted in tRNA cassette; anti- zing finger domain of PVS, AHII and anti hop latent viroid ribozyme were inserted in 7SL RNA gene isolated from A. thaliana. These constructs were shown to be transcribed both, in in vitro and in in vivo conditions. However, it followed from our work that closely linked position of PoIII reference genes and PoIIII antisense genes within T-DNA lead to the impairment of RNA expression in transgenic plants. To assay in vivo transcription of antisense genes, hairy root potato cultures were established using h. tumefaciens A4-24 bearing both, Ri plasmid and PoIII-promoterless plant expression vectors with antisense RNA genes. Expression of antisense RNA in transgenic potato tissues was proven by specific RT-PCR reactions.

  • PDF

Cytolytic Effects of an Adenoviral Vector Containing L-Plastin Promoter Regulated E1A in Hepatocellular Carcinoma Cells

  • Chung, In-Jae
    • Biomolecules & Therapeutics
    • /
    • 제14권3호
    • /
    • pp.148-151
    • /
    • 2006
  • We have previously reported that 2.4 kb of L-plastin promoter (LP) could regulate the expression of adenoviral vector (AV) exogenous genes in a tumor cell specific manner. In the present study, we tested if the replication competent AdLPE1A vector results in a direct cytotoxic effect in hepatocelluar carcinoma (HCC) cells. In vitro cytotoxicity tests were carried out with replication-competent (AdLPE1A) and -incompetent (AdLPCD) LP-driven vectors. AdLPE1A is an AV in which LP was inserted 5' to the E1A and E1B genes. The AdLPCD vector contains LP and the E. coli cytosine deaminase (CD) gene in transcription unit. Exposure of cells to AdLPE1A generated a significant cytotoxic effect as compared to the control. Almost 90% of the cell had manifested the characteristic cytopatic effect on day 9 after infection of cells with 10 MOI of AdLPE1A. On the other hand, almost 35% of the cells were left when the cells had been treated with 100 MOI of AdLPCD together with 5-FC on day 9 when compared with the cells which had never been exposed neither 5-FC nor AdLPCD. These results showed that the replication competent AdLPE1A vector could kill the HepG2 cells directly by the oncolytic effect of the virus. The replication competent AV vector carrying viral E1A generated greater cytotoxic effect than the replication incompetent AV, which contains the CD prodrug activation transcription unit without E1A, in HepG2 cells.

The Use of a Tobacco mosaic virus-Based Expression Vector System in Chrysanthemum

  • Park, Minju;Baek, Eseul;Yoon, Ju-Yeon;Palukaitis, Peter
    • The Plant Pathology Journal
    • /
    • 제33권4호
    • /
    • pp.429-433
    • /
    • 2017
  • Chrysanthemums (Chrysanthemum morifolium) are susceptible to tobacco mosaic virus (TMV). TMV-based expression vectors have been used in high-throughput experiments for production of foreign protein in plants and also expressing green fluorescent protein (GFP) to allow visualization of TMV movement. Here, we used TMV expressing the GFP to examine the infection of chrysanthemum by a TMV-based expression vector. Viral replication, movement and GFP expression by TMV-GFP were verified in upper leaves of chrysanthemums up to 73 days post inoculation (dpi) by RT-PCR. Neither wild-type TMV nor TMV-GFP induced symptoms. GFP fluorescence was seen in the larger veins of the inoculated leaf, in the stem above the inoculation site and in petioles of upper leaves, although there was no consistent detection of GFP fluorescence in the lamina of upper leaves under UV. Thus, a TMV-based expression vector can infect chrysanthemum and can be used for the in vivo study of gene functions.

Optimizing the Novel Formulation of Liposome-Polycation-DNA Complexes (LPD) by Central Composite Design

  • Sun, Xun;Zhang, Zhirong
    • Archives of Pharmacal Research
    • /
    • 제27권7호
    • /
    • pp.797-805
    • /
    • 2004
  • LPD vectors are non-viral vehicles for gene delivery comprised of polycation-condensed plasmid DNA and liposomes. Here, we described a novel anionic LPD formulation containing protamine-DNA complexes and pH sensitive liposomes composed of DOPE and cholesteryl hemisuccinate (Chems). Central composite design (CCD) was employed to optimize stable LPD formulation with small particle size. A three factor, five-level CCD design was used for the optimization procedure, with the weight ratio of protamine/DNA ($X_1$), the weight ratio of Chems/DNA ($X_2$) and the molar ratio of Chems/DOPE in the anionic liposomes ($X_3$) as the independent variables. LPD size ($Y_1$) and LPD protection efficiency against nuclease ($Y_2$) were response variables. Zeta potential determination was utilized to define the experimental design region. Based on experimental design, responses for the 15 formulations were obtained. Mathematical equations and response surface plots were used to relate the dependent and independent variables. The mathematical model predicted optimized $X_1-X_3$ levels that achieve the desired particle size and the protection efficiency against nuclease. According to these levels, an optimized LPD formulation was prepared, resulting in a particle size of 185.3 nm and protection efficiency of 80.22%.

IHNV (Infectious Hematopoietic Necrosis Virus): 과거, 현재, 그리고 미래 (INHV (Infectious Hematopoietic Necrosis Virus): Past, Present and Future)

  • 박정우;조미영;이언화;최혜승
    • 한국수산과학회지
    • /
    • 제54권5호
    • /
    • pp.596-616
    • /
    • 2021
  • A global increase in fish consumption has led to a rapid expansion of aquaculture production, which has been linked to enhancing the spread of infectious diseases. Viral diseases can cause high mortality in many cultured fish species, posing a serious threat to the aquaculture industry. Infectious hematopoietic necrosis virus (IHNV) is one of the primary threats to aquacultured salmonid species, causing huge economic losses. Since the first report in cultured sockeye salmon Oncorhynchus nerka during the 1950s in North America, IHNV has spread to other regions, including Europe, Asia, South America, and Africa by transportation of infected fish and eggs, causing disease and increasing mortality in a wide variety of salmonid species. Here, we review existing information relevant to IHNV: its phylogenetic characteristics, origin, infection history, virulence determinants, susceptible hosts, vectors, and vaccine development. This review also addresses a possible cross-species transmission of IHNV to a new host, olive flounder Paralichthys olivaceus, a cultured fish of economic importance in East Asian countries.

Production of virus-like particles of nervous necrosis virus displaying partial VHSV's glycoprotein at surface and encapsulating DNA vaccine plasmids

  • Yang, Jeong In;Bessaid, Mariem;Kim, Ki Hong
    • 한국어병학회지
    • /
    • 제33권2호
    • /
    • pp.103-109
    • /
    • 2020
  • In order to use nervous necrosis virus (NNV) virus-like particles (VLPs) as a delivery tool for heterologous antigens or plasmids, we attempted to produce red-spotted grouper nervous necrosis virus (RGNNV) VLPs displaying a partial region of viral hemorrhagic septicemia virus (VHSV) glycoprotein at the surface and VLPs that are harboring DNA vaccine plasmids within the VLP. A peptide encoding 105 amino acids of VHSV glycoprotein was genetically inserted in the loop region of NNV capsid gene, and VLPs expressing the partial part of VHSV glycoprotein were successfully produced. However, in the transmission electron microscope analysis, the shape and size of the partial VHSV glycoprotein-expressing NNV VLPs were irregular and variable, respectively, indicating that the normal assembly of capsid proteins was inhibited by the relatively long foreign peptide (105 aa) on the loop region. To encapsulate by simultaneous transformation with both NNV capsid gene expressing plasmids and DNA vaccine plasmids (having an eGFP expressing cassette under the CMV promoter), NNV VLPs containing plasmids were produced. The encapsulation of plasmids in the NNV VLPs was demonstrated by PCR and cells exposed to the VLPs encapsulating DNA vaccine plasmids showed fluorescence. These results suggest that the encapsulation of plasmids in NNV VLPs can be done with a simple one-step process, excluding the process of disassembly-reassembly of VLPs, and NNV VLPs can be used as a delivery tool for DNA vaccine vectors.

Evaluation of the Weeds around Capsicum annuum (CA) Cultivation Fields as Potential Habitats of CA-Infecting Viruses

  • Min-Kyung Choi
    • The Plant Pathology Journal
    • /
    • 제39권4호
    • /
    • pp.374-383
    • /
    • 2023
  • Capsicum annuum (CA) is grown outdoors across fields in Jeollabuk-do, South Korea. The weeds surrounding these fields were investigated regarding the infection of 11 viruses infecting CA during the year 2014-2018. In the reverse transcription polymerase chain reaction diagnosis, 546 out of 821 CA samples (66.5%) were infected by nine viruses, and 190 out of 918 weed samples (20.7%) were infected by eight viruses. Correlation analysis of the mutual influence of the viruses infecting CA and weeds during these 5 years showed that five viruses had significant positive correlations with the infection in both CA and weeds. Over the study period, the weeds infected by cucumber mosaic virus (CMV) in the previous year were positively correlated with the incidence of CMV infection in CA in the current year, although the correlation was lower for tomato spotted wilt virus (TSWV) compared to CMV. The CMV infection percent was 14.0% in summer annuals, 11.4% in perennials, and 7.8% in winter annuals. However, considering the overwintering period without CA, the infection percent was 5.2% higher in winter annuals and perennials than that in summer annuals, indicating that winter annual and perennial weeds served as the main habitats for insect vectors. The TSWV infection percent in weeds was 10.4% in summer annuals, 6.4% in winter annuals, and 6.2% in perennials. The weeds surrounding CA fields, acting as the intermediate hosts, were found to be the potent sources of infection, influencing the spread and diversity of CA-infecting viruses. The results of this study can contribute to prevent viral infection in agricultural fields.