• 제목/요약/키워드: video input

검색결과 594건 처리시간 0.027초

실시간 비디오 스타일 전이 기법에 관한 연구 (Real-time Style Transfer for Video)

  • 서상현
    • 스마트미디어저널
    • /
    • 제5권4호
    • /
    • pp.63-68
    • /
    • 2016
  • 텍스처전이(Texture Transfer) 기법은 타겟영상의 고주파 성분인 텍스쳐를 소스영상에 적용시키는 영상처리 방법이다. 이 텍스쳐 전이기법은 입력 영상에 표현되고 있는 질감 등의 스타일을 대상 영상에 전이시키는데 사용 될 수 있다. 본 연구에서는 이러한 텍스쳐 전이기법을 비디오에 적용시키기 위한 방법을 제안한다. 특히 동영상에 적용시키기 위한 실시간 병렬 처리 알고리즘을 제안한다. 이를 위해서 기존 텍스쳐 전이기법에 사용되는 커널의 모양을 변경하여 병렬화가 가능하도록 하였으며, 동영상 적용 시 발생하는 시간적 일관성문제를 해결하기 위한 방법으로 비디오 프레임 영상의 다중해상도를 사용한 광류측정법을 제안하여 적용함으로써 실시간 비디오 처리를 가능하게 하였다.

쿼드트리 알고리즘을 이용한 비디오 서브밴드 코딩 (Video Subband Coding using Quad-Tree Algorithm)

  • 안종구;추형석
    • 융합신호처리학회논문지
    • /
    • 제6권3호
    • /
    • pp.120-126
    • /
    • 2005
  • 본 논문에서는 3차원 웨이브릿 변환을 기반으로 하고 쿼드트리 코딩 알고리즘을 이용한 동영상 압축 시스템을 제안하였다. 3차원 웨이브릿 기반 비디오 압축 시스템은 3차원 웨이브릿 변환의 움직임 보상형 시간축 필터를 이용하여 입력영상신호의 시간적 상관관계를 제거하고, 공간상의 웨이브릿 변환에 의하여 시공간의 서브밴드로 분해한다. 제안한 시스템은 3차원 웨이브릿 영상에서 에너지가 집중된 저주파 영상에 상대적으로 비트율을 높게 할당하였고, H.263 알고리즘과 비교하여 복원된 영상의 PSNR 성능을 0.64dB 향상시켰다. 또한 제안한 시스템은 3차원 웨이브릿 변환을 이용하여 움직임 보상 에러의 전파를 제거하였고, 다분해능과 압축 비트율에 따라서 점진적 전송이 가능하다.

  • PDF

물체탐색과 전경영상을 이용한 인공지능 멀티태스크 성능 비교 (Comparison of Artificial Intelligence Multitask Performance using Object Detection and Foreground Image)

  • 정민혁;김상균;이진영;추현곤;이희경;정원식
    • 방송공학회논문지
    • /
    • 제27권3호
    • /
    • pp.308-317
    • /
    • 2022
  • 딥러닝 기반 머신 비전 기술을 이용한 영상분석 과정에서 전송되고 저장되는 방대한 양의 동영상 데이터의 용량을 효율적으로 줄이기 위한 연구들이 진행 중이다. MPEG(Moving Picture Expert Group)은 VCM(Video Coding for Machine)이라는 표준화 프로젝트를 신설해 인간을 위한 동영상 부호화가 아닌 기계를 위한 동영상 부호화에 대한 연구를 진행 중이다. 그 중 한 번의 영상 입력으로 여러가지 태스크를 수행하는 멀티태스크에 대한 연구를 진행하고 있다. 본 논문에서는 효율적인 멀티태스크를 위한 파이프라인을 제안한다. 제안하는 파이프라인은 물체탐지를 선행해야 하는 각 태스크들의 물체탐지를 모두 수행하지 않고 한번만 선행하여 그 결과를 각 태스크의 입력으로 사용한다. 제안하는 멀티태스크 파이프라인의 효율성을 알아보기 위해 입력영상의 압축효율, 수행시간, 그리고 결과 정확도에 대한 비교 실험을 수행한다. 실험 결과 입력 영상의 용량이 97.5% 이상 감소한데 반해 결과 정확도는 소폭 감소하여 멀티태스크에 대한 효율적인 수행 가능성을 확인할 수 있었다.

Customizing Ground Color to Deliver Better Viewing Experience of Soccer Video

  • Ahn, Il-Koo;Kim, Young-Woo;Kim, Chang-Ick
    • ETRI Journal
    • /
    • 제30권1호
    • /
    • pp.101-112
    • /
    • 2008
  • In this paper, we present a method to customize the ground color in outdoor sports video to provide TV viewers with a better viewing experience or subjective satisfaction. This issue, related to content personalization, is becoming critical with the advent of mobile TV and interactive TV. In outdoor sports video, such as soccer video, it is sometimes observed that the ground color is not satisfactory to viewers. In this work, the proposed algorithm is focused on customizing the ground color to deliver a better viewing experience for viewers. The algorithm comprises three modules: ground detection, shot classification, and ground color customization. We customize the ground color by considering the difference between ground colors from both input video and the target ground patch. Experimental results show that the proposed scheme offers useful tools to provide a more comfortable viewing experience and that it is amenable to real-time performance, even in a software-based implementation.

  • PDF

Video Sequence Matching Using Normalized Dominant Singular Values

  • Jeong, Kwang-Min;Lee, Joon-Jae
    • 한국멀티미디어학회논문지
    • /
    • 제12권6호
    • /
    • pp.785-793
    • /
    • 2009
  • This paper proposes a signature using dominant singular values for video sequence matching. By considering the input image as matrix A, a partition procedure is first performed to separate the matrix into non-overlapping sub-images of a fixed size. The SVD(Singular Value Decomposition) process decomposes matrix A into a singular value-singular vector factorization. As a result, singular values are obtained for each sub-image, then k dominant singular values which are sufficient to discriminate between different images and are robust to image size variation, are chosen and normalized as the signature for each block in an image frame for matching between the reference video clip and the query one. Experimental results show that the proposed video signature has a better performance than ordinal signature in ROC curve.

  • PDF

Viewer's Affective Feedback for Video Summarization

  • Dammak, Majdi;Wali, Ali;Alimi, Adel M.
    • Journal of Information Processing Systems
    • /
    • 제11권1호
    • /
    • pp.76-94
    • /
    • 2015
  • For different reasons, many viewers like to watch a summary of films without having to waste their time. Traditionally, video film was analyzed manually to provide a summary of it, but this costs an important amount of work time. Therefore, it has become urgent to propose a tool for the automatic video summarization job. The automatic video summarization aims at extracting all of the important moments in which viewers might be interested. All summarization criteria can differ from one video to another. This paper presents how the emotional dimensions issued from real viewers can be used as an important input for computing which part is the most interesting in the total time of a film. Our results, which are based on lab experiments that were carried out, are significant and promising.

Adaptive Combined Scalable Video Coding over MIMO-OFDM Systems using Partial Channel State Information

  • Rantelobo, Kalvein;Wirawan, Wirawan;Hendrantoro, Gamantyo;Affandi, Achmad;Zhao, Hua-An
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권12호
    • /
    • pp.3200-3219
    • /
    • 2013
  • This paper proposes an adaptive combined scalable video coding (CSVC) system for video transmission over MIMO-OFDM (Multiple-Input Multiple-Output-Orthogonal Frequency Division Multiplexing) broadband wireless communication systems. The scalable combination method of CSVC adaptively combines the medium grain scalable (MGS), the coarse grain scalable (CGS) and the scalable spatial modes with the limited feedback partially from channel state information (CSI) of MIMO-OFDM systems. The objective is to improve the average of peak signal-to-noise ratio (PSNR) and bit error rate (BER) of the received video stream by exploiting partial CSI of video sources and channel condition. Experimental results show that the delivered quality using the proposed adaptive CSVC over MIMO-OFDM system performs better than those proposed previously in the literature.

대규모 종합감시시스템 환경에서의 비디오의 특징분석 기반 감시 알고리즘 선택 기법 (A Surveillance Algorithm Selection Method Based on Video Features for Large-scale Integrated Surveillance Systems)

  • 박광영;박구만
    • 한국위성정보통신학회논문지
    • /
    • 제7권1호
    • /
    • pp.33-38
    • /
    • 2012
  • 본 논문에서는 대규모 종합감시시스템 환경에서 비디오의 특징을 분석하여 비디오가 촬영되는 환경에 적합한 지능형 영상분석 알고리즘 선택 기준을 제안하였다. 대규모 종합감시시스템 환경의 예로 도시철도 감시시스템을 사용하였다. 본 시스템에 설치된 카메라에 입력되는 비디오의 특징을 위치와 용도 및 상황별로 분석하였다. 분석을 기반으로 하여 적합한 비디오 감시 알고리즘을 선택하는 기준을 제시하였으며 상황 처리 시나리오를 제시하였다.

다목적 비디오 부/복호화를 위한 다층 퍼셉트론 기반 삼항 트리 분할 결정 방법 (Multi-Layer Perceptron Based Ternary Tree Partitioning Decision Method for Versatile Video Coding)

  • 이태식;전동산
    • 한국멀티미디어학회논문지
    • /
    • 제25권6호
    • /
    • pp.783-792
    • /
    • 2022
  • Versatile Video Coding (VVC) is the latest video coding standard, which had been developed by the Joint Video Experts Team (JVET) of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG) in 2020. Although VVC can provide powerful coding performance, it requires tremendous computational complexity to determine the optimal block structures during the encoding process. In this paper, we propose a fast ternary tree decision method using two neural networks with 7 nodes as input vector based on the multi-layer perceptron structure, names STH-NN and STV-NN. As a training result of neural network, the STH-NN and STV-NN achieved accuracies of 85% and 91%, respectively. Experimental results show that the proposed method reduces the encoding complexity up to 25% with unnoticeable coding loss compared to the VVC test model (VTM).

Zero Deep Curve 추정방식을 이용한 저조도에 강인한 비디오 개선 방법 (Low-Light Invariant Video Enhancement Scheme Using Zero Reference Deep Curve Estimation)

  • 최형석;양윤기
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.991-998
    • /
    • 2022
  • Recently, object recognition using image/video signals is rapidly spreading on autonomous driving and mobile phones. However, the actual input image/video signals are easily exposed to a poor illuminance environment. A recent researches for improving illumination enable to estimate and compensate the illumination parameters. In this study, we propose VE-DCE (video enhancement zero-reference deep curve estimation) to improve the illumination of low-light images. The proposed VE-DCE uses unsupervised learning-based zero-reference deep curve, which is one of the latest among learning based estimation techniques. Experimental results show that the proposed method can achieve the quality of low-light video as well as images compared to the previous method. In addition, it can reduce the computational complexity with respect to the existing method.